An isomorphic Dvoretzky's theorem for convex bodies
Studia Mathematica, Tome 127 (1998) no. 2, pp. 191-200

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that there exist constants C>0 and 0 λ 1 so that for all convex bodies K in $ℝ^n$ with non-empty interior and all integers k so that 1 ≤ k ≤ λn/ln(n+1), there exists a k-dimensional affine subspace Y of $ℝ^n$ satisfying $d(Y ∩ K, B_2^k) ≤ C(1+ √(k/ln(n/(kln(n+1))))$. This formulation of Dvoretzky's theorem for large dimensional sections is a generalization with a new proof of the result due to Milman and Schechtman for centrally symmetric convex bodies. A sharper estimate holds for the n-dimensional simplex.
DOI : 10.4064/sm-127-2-191-200

Y. Gordon 1 ; O. Guédon 1 ; M. Meyer 1

1
@article{10_4064_sm_127_2_191_200,
     author = {Y. Gordon and O. Gu\'edon and M. Meyer},
     title = {An isomorphic {Dvoretzky's} theorem for convex bodies},
     journal = {Studia Mathematica},
     pages = {191--200},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-127-2-191-200},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-191-200/}
}
TY  - JOUR
AU  - Y. Gordon
AU  - O. Guédon
AU  - M. Meyer
TI  - An isomorphic Dvoretzky's theorem for convex bodies
JO  - Studia Mathematica
PY  - 1998
SP  - 191
EP  - 200
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-191-200/
DO  - 10.4064/sm-127-2-191-200
LA  - en
ID  - 10_4064_sm_127_2_191_200
ER  - 
%0 Journal Article
%A Y. Gordon
%A O. Guédon
%A M. Meyer
%T An isomorphic Dvoretzky's theorem for convex bodies
%J Studia Mathematica
%D 1998
%P 191-200
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-191-200/
%R 10.4064/sm-127-2-191-200
%G en
%F 10_4064_sm_127_2_191_200
Y. Gordon; O. Guédon; M. Meyer. An isomorphic Dvoretzky's theorem for convex bodies. Studia Mathematica, Tome 127 (1998) no. 2, pp. 191-200. doi: 10.4064/sm-127-2-191-200

Cité par Sources :