Perfect sets of finite class without the extension property
Studia Mathematica, Tome 126 (1997) no. 2, pp. 161-170

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
DOI : 10.4064/sm-126-2-161-170

A. Goncharov 1

1
@article{10_4064_sm_126_2_161_170,
     author = {A. Goncharov},
     title = {Perfect sets of finite class without the extension property},
     journal = {Studia Mathematica},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-126-2-161-170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/}
}
TY  - JOUR
AU  - A. Goncharov
TI  - Perfect sets of finite class without the extension property
JO  - Studia Mathematica
PY  - 1997
SP  - 161
EP  - 170
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/
DO  - 10.4064/sm-126-2-161-170
LA  - en
ID  - 10_4064_sm_126_2_161_170
ER  - 
%0 Journal Article
%A A. Goncharov
%T Perfect sets of finite class without the extension property
%J Studia Mathematica
%D 1997
%P 161-170
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/
%R 10.4064/sm-126-2-161-170
%G en
%F 10_4064_sm_126_2_161_170
A. Goncharov. Perfect sets of finite class without the extension property. Studia Mathematica, Tome 126 (1997) no. 2, pp. 161-170. doi: 10.4064/sm-126-2-161-170

Cité par Sources :