Perfect sets of finite class without the extension property
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 126 (1997) no. 2, pp. 161-170
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α  2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
            
            
            
          
        
      @article{10_4064_sm_126_2_161_170,
     author = {A. Goncharov},
     title = {Perfect sets of finite class without the extension property},
     journal = {Studia Mathematica},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-126-2-161-170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/}
}
                      
                      
                    TY - JOUR AU - A. Goncharov TI - Perfect sets of finite class without the extension property JO - Studia Mathematica PY - 1997 SP - 161 EP - 170 VL - 126 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/ DO - 10.4064/sm-126-2-161-170 LA - en ID - 10_4064_sm_126_2_161_170 ER -
A. Goncharov. Perfect sets of finite class without the extension property. Studia Mathematica, Tome 126 (1997) no. 2, pp. 161-170. doi: 10.4064/sm-126-2-161-170
Cité par Sources :
