Perfect sets of finite class without the extension property
Studia Mathematica, Tome 126 (1997) no. 2, pp. 161-170
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
@article{10_4064_sm_126_2_161_170,
author = {A. Goncharov},
title = {Perfect sets of finite class without the extension property},
journal = {Studia Mathematica},
pages = {161--170},
year = {1997},
volume = {126},
number = {2},
doi = {10.4064/sm-126-2-161-170},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/}
}
TY - JOUR AU - A. Goncharov TI - Perfect sets of finite class without the extension property JO - Studia Mathematica PY - 1997 SP - 161 EP - 170 VL - 126 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-161-170/ DO - 10.4064/sm-126-2-161-170 LA - en ID - 10_4064_sm_126_2_161_170 ER -
A. Goncharov. Perfect sets of finite class without the extension property. Studia Mathematica, Tome 126 (1997) no. 2, pp. 161-170. doi: 10.4064/sm-126-2-161-170
Cité par Sources :