First and second order Opial inequalities
Studia Mathematica, Tome 126 (1997) no. 1, pp. 27-50

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T_γ f(x) = ʃ_0^x k(x,y)^γ f(y)dy$, where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form $ʃ_0^∞ (∏_{i=1}^n |T_{γ_i}f(x)|^{q_i}|) |f(x)|^{q_0} w(x)dx ≤ C(ʃ_0^∞ |f(x)|^p v(x)dx)^{(q_0+…+q_n)/p}$. Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent $q_0 = 0$. When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.
DOI : 10.4064/sm-126-1-27-50

Steven Bloom 1

1
@article{10_4064_sm_126_1_27_50,
     author = {Steven Bloom},
     title = {First and second order {Opial} inequalities},
     journal = {Studia Mathematica},
     pages = {27--50},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-126-1-27-50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-27-50/}
}
TY  - JOUR
AU  - Steven Bloom
TI  - First and second order Opial inequalities
JO  - Studia Mathematica
PY  - 1997
SP  - 27
EP  - 50
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-27-50/
DO  - 10.4064/sm-126-1-27-50
LA  - en
ID  - 10_4064_sm_126_1_27_50
ER  - 
%0 Journal Article
%A Steven Bloom
%T First and second order Opial inequalities
%J Studia Mathematica
%D 1997
%P 27-50
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-27-50/
%R 10.4064/sm-126-1-27-50
%G en
%F 10_4064_sm_126_1_27_50
Steven Bloom. First and second order Opial inequalities. Studia Mathematica, Tome 126 (1997) no. 1, pp. 27-50. doi: 10.4064/sm-126-1-27-50

Cité par Sources :