Non-reflexive pentagon subspace lattices
Studia Mathematica, Tome 125 (1997) no. 2, pp. 187-199

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On a complex separable (necessarily infinite-dimensional) Hilbert space H any three subspaces K, L and M satisfying K∩M = (0), K∨L = H and L⊂M give rise to what has been called by Halmos [4,5] a pentagon subspace lattice $P={(0),K,L,M,H}$. Then n = dim M ⊖ L is called the gap-dimension of P. Examples are given to show that, if n ∞, the order-interval $[L,M]_{Lat Alg P} = {N ∈ Lat Alg P: L ⊆ N ⊆ M}$ in Lat Alg P can be either (i) a nest with n+1 elements, or (ii) an atomic Boolean algebra with n atoms, or (iii) the set of all subspaces of H between L and M. For n > 1, since Lat Alg P = P∩[L,M]_{Lat Alg P}$, all such examples of pentagons are non-reflexive, the examples in case (iii) extremely so.
DOI : 10.4064/sm-125-2-187-199

M. S. Lambrou 1 ; W. E. Longstaff 1

1
@article{10_4064_sm_125_2_187_199,
     author = {M. S.  Lambrou and W. E.  Longstaff},
     title = {Non-reflexive pentagon subspace lattices},
     journal = {Studia Mathematica},
     pages = {187--199},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-125-2-187-199},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-187-199/}
}
TY  - JOUR
AU  - M. S.  Lambrou
AU  - W. E.  Longstaff
TI  - Non-reflexive pentagon subspace lattices
JO  - Studia Mathematica
PY  - 1997
SP  - 187
EP  - 199
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-187-199/
DO  - 10.4064/sm-125-2-187-199
LA  - en
ID  - 10_4064_sm_125_2_187_199
ER  - 
%0 Journal Article
%A M. S.  Lambrou
%A W. E.  Longstaff
%T Non-reflexive pentagon subspace lattices
%J Studia Mathematica
%D 1997
%P 187-199
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-187-199/
%R 10.4064/sm-125-2-187-199
%G en
%F 10_4064_sm_125_2_187_199
M. S.  Lambrou; W. E.  Longstaff. Non-reflexive pentagon subspace lattices. Studia Mathematica, Tome 125 (1997) no. 2, pp. 187-199. doi: 10.4064/sm-125-2-187-199

Cité par Sources :