Non-reflexive pentagon subspace lattices
Studia Mathematica, Tome 125 (1997) no. 2, pp. 187-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
On a complex separable (necessarily infinite-dimensional) Hilbert space H any three subspaces K, L and M satisfying K∩M = (0), K∨L = H and L⊂M give rise to what has been called by Halmos [4,5] a pentagon subspace lattice $P={(0),K,L,M,H}$. Then n = dim M ⊖ L is called the gap-dimension of P. Examples are given to show that, if n ∞, the order-interval $[L,M]_{Lat Alg P} = {N ∈ Lat Alg P: L ⊆ N ⊆ M}$ in Lat Alg P can be either (i) a nest with n+1 elements, or (ii) an atomic Boolean algebra with n atoms, or (iii) the set of all subspaces of H between L and M. For n > 1, since Lat Alg P = P∩[L,M]_{Lat Alg P}$, all such examples of pentagons are non-reflexive, the examples in case (iii) extremely so.
Affiliations des auteurs :
M. S. Lambrou 1 ; W. E. Longstaff 1
@article{10_4064_sm_125_2_187_199,
author = {M. S. Lambrou and W. E. Longstaff},
title = {Non-reflexive pentagon subspace lattices},
journal = {Studia Mathematica},
pages = {187--199},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {1997},
doi = {10.4064/sm-125-2-187-199},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-187-199/}
}
TY - JOUR AU - M. S. Lambrou AU - W. E. Longstaff TI - Non-reflexive pentagon subspace lattices JO - Studia Mathematica PY - 1997 SP - 187 EP - 199 VL - 125 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-187-199/ DO - 10.4064/sm-125-2-187-199 LA - en ID - 10_4064_sm_125_2_187_199 ER -
M. S. Lambrou; W. E. Longstaff. Non-reflexive pentagon subspace lattices. Studia Mathematica, Tome 125 (1997) no. 2, pp. 187-199. doi: 10.4064/sm-125-2-187-199
Cité par Sources :