Hereditarily finitely decomposable Banach spaces
Studia Mathematica, Tome 123 (1997) no. 2, pp. 135-149
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A Banach space is said to be $HD_n$ if the maximal number of subspaces of X forming a direct sum is finite and equal to n. We study some properties of $HD_n$ spaces, and their links with hereditarily indecomposable spaces; in particular, we show that if X is complex $HD_n$, then dim $(ℒ(X)/S(X)) ≤ n^2$, where S(X) denotes the space of strictly singular operators on X. It follows that if X is a real hereditarily indecomposable space, then ℒ(X)/S(X) is a division ring isomorphic either to ℝ, ℂ, or ℍ, the quaternionic division ring.
@article{10_4064_sm_123_2_135_149,
author = {V. Perenczi},
title = {Hereditarily finitely decomposable {Banach} spaces},
journal = {Studia Mathematica},
pages = {135--149},
publisher = {mathdoc},
volume = {123},
number = {2},
year = {1997},
doi = {10.4064/sm-123-2-135-149},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-135-149/}
}
TY - JOUR AU - V. Perenczi TI - Hereditarily finitely decomposable Banach spaces JO - Studia Mathematica PY - 1997 SP - 135 EP - 149 VL - 123 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-135-149/ DO - 10.4064/sm-123-2-135-149 LA - en ID - 10_4064_sm_123_2_135_149 ER -
V. Perenczi. Hereditarily finitely decomposable Banach spaces. Studia Mathematica, Tome 123 (1997) no. 2, pp. 135-149. doi: 10.4064/sm-123-2-135-149
Cité par Sources :