On the maximal operator associated with the free Schrödinger equation
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 122 (1997) no. 2, pp. 167-182
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              For d > 1, let $(S_{d}f)(x,t) = ʃ_{ℝ^n} e^{ix·ξ} e^{it|ξ|^d} f̂(ξ)dξ$, $x ∈ ℝ^n$, where f̂ is the Fourier transform of $f ∈ S (ℝ^n)$, and $(S_{d}*f)(x) = sup_{0  t  1} |(S_{d}f)(x,t)|$ its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) $(ʃ_{|x|  R} |(S_{d}*f)(x)|^p dx)^{1/p} ≤ C_{R}∥f∥_{H_{1/4}}$ holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
free Schrödinger equation, maximal functions, spherical harmonics, oscillatory integrals
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Sichun Wang 1
@article{10_4064_sm_122_2_167_182,
     author = {Sichun Wang},
     title = {On the maximal operator associated with the free {Schr\"odinger} equation},
     journal = {Studia Mathematica},
     pages = {167--182},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-122-2-167-182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/}
}
                      
                      
                    TY - JOUR AU - Sichun Wang TI - On the maximal operator associated with the free Schrödinger equation JO - Studia Mathematica PY - 1997 SP - 167 EP - 182 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/ DO - 10.4064/sm-122-2-167-182 LA - en ID - 10_4064_sm_122_2_167_182 ER -
Sichun Wang. On the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 122 (1997) no. 2, pp. 167-182. doi: 10.4064/sm-122-2-167-182
Cité par Sources :
