On the maximal operator associated with the free Schrödinger equation
Studia Mathematica, Tome 122 (1997) no. 2, pp. 167-182
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For d > 1, let $(S_{d}f)(x,t) = ʃ_{ℝ^n} e^{ix·ξ} e^{it|ξ|^d} f̂(ξ)dξ$, $x ∈ ℝ^n$, where f̂ is the Fourier transform of $f ∈ S (ℝ^n)$, and $(S_{d}*f)(x) = sup_{0 t 1} |(S_{d}f)(x,t)|$ its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) $(ʃ_{|x| R} |(S_{d}*f)(x)|^p dx)^{1/p} ≤ C_{R}∥f∥_{H_{1/4}}$ holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.
Keywords:
free Schrödinger equation, maximal functions, spherical harmonics, oscillatory integrals
@article{10_4064_sm_122_2_167_182,
author = {Sichun Wang},
title = {On the maximal operator associated with the free {Schr\"odinger} equation},
journal = {Studia Mathematica},
pages = {167--182},
year = {1997},
volume = {122},
number = {2},
doi = {10.4064/sm-122-2-167-182},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/}
}
TY - JOUR AU - Sichun Wang TI - On the maximal operator associated with the free Schrödinger equation JO - Studia Mathematica PY - 1997 SP - 167 EP - 182 VL - 122 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/ DO - 10.4064/sm-122-2-167-182 LA - en ID - 10_4064_sm_122_2_167_182 ER -
Sichun Wang. On the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 122 (1997) no. 2, pp. 167-182. doi: 10.4064/sm-122-2-167-182
Cité par Sources :