On the maximal operator associated with the free Schrödinger equation
Studia Mathematica, Tome 122 (1997) no. 2, pp. 167-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For d > 1, let $(S_{d}f)(x,t) = ʃ_{ℝ^n} e^{ix·ξ} e^{it|ξ|^d} f̂(ξ)dξ$, $x ∈ ℝ^n$, where f̂ is the Fourier transform of $f ∈ S (ℝ^n)$, and $(S_{d}*f)(x) = sup_{0 t 1} |(S_{d}f)(x,t)|$ its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) $(ʃ_{|x| R} |(S_{d}*f)(x)|^p dx)^{1/p} ≤ C_{R}∥f∥_{H_{1/4}}$ holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.
DOI : 10.4064/sm-122-2-167-182
Keywords: free Schrödinger equation, maximal functions, spherical harmonics, oscillatory integrals

Sichun Wang 1

1
@article{10_4064_sm_122_2_167_182,
     author = {Sichun Wang},
     title = {On the maximal operator associated with the free {Schr\"odinger} equation},
     journal = {Studia Mathematica},
     pages = {167--182},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-122-2-167-182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/}
}
TY  - JOUR
AU  - Sichun Wang
TI  - On the maximal operator associated with the free Schrödinger equation
JO  - Studia Mathematica
PY  - 1997
SP  - 167
EP  - 182
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/
DO  - 10.4064/sm-122-2-167-182
LA  - en
ID  - 10_4064_sm_122_2_167_182
ER  - 
%0 Journal Article
%A Sichun Wang
%T On the maximal operator associated with the free Schrödinger equation
%J Studia Mathematica
%D 1997
%P 167-182
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-167-182/
%R 10.4064/sm-122-2-167-182
%G en
%F 10_4064_sm_122_2_167_182
Sichun Wang. On the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 122 (1997) no. 2, pp. 167-182. doi: 10.4064/sm-122-2-167-182

Cité par Sources :