Weak type (1,1) multipliers on LCA groups
Studia Mathematica, Tome 122 (1997) no. 2, pp. 123-130

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In [ABB] Asmar, Berkson and Bourgain prove that for a sequence ${ϕ_j}^∞_{j=1} $ of weak type (1, 1) multipliers in $ℝ^n$ and a function $k ∈ L^1(ℝ^n)$ the weak type (1,1) constant of the maximal operator associated with ${k⁎ϕ_j}_j$ is controlled by that of the maximal operator associated with ${ϕ_j}_j$. In [ABG] this theorem is extended to LCA groups with an extra hypothesis: the multipliers must be continuous. In this paper we prove a more general version of this last result without assuming the continuity of the multipliers. The proof arises after simplifying the one in [ABB] which becomes then extensible to LCA groups.
DOI : 10.4064/sm-122-2-123-130
Keywords: weak type multipliers, maximal operators, vector inequalities

José A Raposo 1

1
@article{10_4064_sm_122_2_123_130,
     author = {Jos\'e A  Raposo},
     title = {Weak type (1,1) multipliers on {LCA} groups},
     journal = {Studia Mathematica},
     pages = {123--130},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-122-2-123-130},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-123-130/}
}
TY  - JOUR
AU  - José A  Raposo
TI  - Weak type (1,1) multipliers on LCA groups
JO  - Studia Mathematica
PY  - 1997
SP  - 123
EP  - 130
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-123-130/
DO  - 10.4064/sm-122-2-123-130
LA  - en
ID  - 10_4064_sm_122_2_123_130
ER  - 
%0 Journal Article
%A José A  Raposo
%T Weak type (1,1) multipliers on LCA groups
%J Studia Mathematica
%D 1997
%P 123-130
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-123-130/
%R 10.4064/sm-122-2-123-130
%G en
%F 10_4064_sm_122_2_123_130
José A  Raposo. Weak type (1,1) multipliers on LCA groups. Studia Mathematica, Tome 122 (1997) no. 2, pp. 123-130. doi: 10.4064/sm-122-2-123-130

Cité par Sources :