A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces
Studia Mathematica, Tome 121 (1996) no. 2, pp. 149-166
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let Γ be a closed set in $ℝ^n$ with Lebesgue measure |Γ| = 0. The first aim of the paper is to give a Fourier analytical characterization of Hausdorff dimension of Γ. Let 0 d n. If there exist a Borel measure µ with supp µ ⊂ Γ and constants $c_{1} > 0$ and $c_{2} > 0$ such that $c_{1}r^{d} ≤ µ (B(x,r)) ≤ c_{2}r^{d}$ for all 0 r 1 and all x ∈ Γ, where B(x,r) is a ball with centre x and radius r, then Γ is called a d-set. The second aim of the paper is to provide a link between the related Lebesgue spaces $L_{p}(Γ)$, 0 p ≤ ∞, with respect to that measure µ on the hand and the Fourier analytically defined Besov spaces $B^s_{p,q}(ℝ^n)$ (s ∈ ℝ, 0 p ≤ ∞, 0 q ≤ ∞) on the other hand.
Keywords:
Hausdorff dimension, Hausdorff measure, function spaces
Affiliations des auteurs :
Hans Triebel 1 ; Heike Winkelvoss 1
@article{10_4064_sm_121_2_149_166,
author = {Hans Triebel and Heike Winkelvoss},
title = {A {Fourier} analytical characterization of the {Hausdorff} dimension of a closed set and of related {Lebesgue} spaces},
journal = {Studia Mathematica},
pages = {149--166},
publisher = {mathdoc},
volume = {121},
number = {2},
year = {1996},
doi = {10.4064/sm-121-2-149-166},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-149-166/}
}
TY - JOUR AU - Hans Triebel AU - Heike Winkelvoss TI - A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces JO - Studia Mathematica PY - 1996 SP - 149 EP - 166 VL - 121 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-149-166/ DO - 10.4064/sm-121-2-149-166 LA - en ID - 10_4064_sm_121_2_149_166 ER -
%0 Journal Article %A Hans Triebel %A Heike Winkelvoss %T A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces %J Studia Mathematica %D 1996 %P 149-166 %V 121 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-149-166/ %R 10.4064/sm-121-2-149-166 %G en %F 10_4064_sm_121_2_149_166
Hans Triebel; Heike Winkelvoss. A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces. Studia Mathematica, Tome 121 (1996) no. 2, pp. 149-166. doi: 10.4064/sm-121-2-149-166
Cité par Sources :