A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces
Studia Mathematica, Tome 121 (1996) no. 2, pp. 149-166

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Γ be a closed set in $ℝ^n$ with Lebesgue measure |Γ| = 0. The first aim of the paper is to give a Fourier analytical characterization of Hausdorff dimension of Γ. Let 0 d n. If there exist a Borel measure µ with supp µ ⊂ Γ and constants $c_{1} > 0$ and $c_{2} > 0$ such that $c_{1}r^{d} ≤ µ (B(x,r)) ≤ c_{2}r^{d}$ for all 0 r 1 and all x ∈ Γ, where B(x,r) is a ball with centre x and radius r, then Γ is called a d-set. The second aim of the paper is to provide a link between the related Lebesgue spaces $L_{p}(Γ)$, 0 p ≤ ∞, with respect to that measure µ on the hand and the Fourier analytically defined Besov spaces $B^s_{p,q}(ℝ^n)$ (s ∈ ℝ, 0 p ≤ ∞, 0 q ≤ ∞) on the other hand.
DOI : 10.4064/sm-121-2-149-166
Keywords: Hausdorff dimension, Hausdorff measure, function spaces

Hans Triebel 1 ; Heike Winkelvoss 1

1
@article{10_4064_sm_121_2_149_166,
     author = {Hans Triebel and Heike Winkelvoss},
     title = {A {Fourier} analytical characterization of the {Hausdorff} dimension of a closed set and of related {Lebesgue} spaces},
     journal = {Studia Mathematica},
     pages = {149--166},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-121-2-149-166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-149-166/}
}
TY  - JOUR
AU  - Hans Triebel
AU  - Heike Winkelvoss
TI  - A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 149
EP  - 166
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-149-166/
DO  - 10.4064/sm-121-2-149-166
LA  - en
ID  - 10_4064_sm_121_2_149_166
ER  - 
%0 Journal Article
%A Hans Triebel
%A Heike Winkelvoss
%T A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces
%J Studia Mathematica
%D 1996
%P 149-166
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-149-166/
%R 10.4064/sm-121-2-149-166
%G en
%F 10_4064_sm_121_2_149_166
Hans Triebel; Heike Winkelvoss. A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces. Studia Mathematica, Tome 121 (1996) no. 2, pp. 149-166. doi: 10.4064/sm-121-2-149-166

Cité par Sources :