On the exponential Orlicz norms of stopped Brownian motion
Studia Mathematica, Tome 117 (1995) no. 3, pp. 253-273

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Necessary and sufficient conditions are found for the exponential Orlicz norm (generated by $ψ_p(x) = exp(|x|^p)-1$ with 0 p ≤ 2) of $max_{0≤t≤τ}|B_t|$ or $|B_τ|$ to be finite, where $B = (B_t)_{t≥0}$ is a standard Brownian motion and τ is a stopping time for B. The conditions are in terms of the moments of the stopping time τ. For instance, we find that $∥max_{0≤t≤τ}|B_t|∥_{ψ_1} ∞$ as soon as $E(τ^{k}) = O(C^{k}k^{k})$ for some constant C > 0 as k → ∞ (or equivalently $∥τ∥_{ψ_1} ∞$). In particular, if τ ∼ Exp(λ) or $|N(0,σ^2)|$ then the last condition is satisfied, and we obtain $∥max_{0≤t≤τ}|B_t|∥_{ψ_1} ≤ K √{E(τ)}$ with some universal constant K > 0. Moreover, this inequality remains valid for any class of stopping times τ for B satisfying $E(τ^{k}) ≤ C(Eτ)^{k}k^{k}$ for all k ≥ 1 with some fixed constant C > 0. The method of proof relies upon Taylor expansion, Burkholder-Gundy's inequality, best constants in Doob's maximal inequality, Davis' best constants in the $L^p$-inequalities for stopped Brownian motion, and estimates of the smallest and largest positive zero of Hermite polynomials. The results extend to the case of any continuous local martingale (by applying the time change method of Dubins and Schwarz).
DOI : 10.4064/sm-117-3-253-273
Keywords: Brownian motion (Wiener process), stopping time, exponential Young function, exponential Orlicz norm, Doob's maximal inequality for martingales, Burkholder-Gundy's inequality, Davis' best constants, Hermite polynomial, continuous (local) martingale, Ito's integral, the quadratic variation process, time change (of Brownian motion), Kahane-Khinchin's inequalities

Goran Peškir 1

1
@article{10_4064_sm_117_3_253_273,
     author = {Goran Pe\v{s}kir},
     title = {On the exponential {Orlicz} norms of stopped {Brownian} motion},
     journal = {Studia Mathematica},
     pages = {253--273},
     publisher = {mathdoc},
     volume = {117},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-117-3-253-273},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-253-273/}
}
TY  - JOUR
AU  - Goran Peškir
TI  - On the exponential Orlicz norms of stopped Brownian motion
JO  - Studia Mathematica
PY  - 1995
SP  - 253
EP  - 273
VL  - 117
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-253-273/
DO  - 10.4064/sm-117-3-253-273
LA  - en
ID  - 10_4064_sm_117_3_253_273
ER  - 
%0 Journal Article
%A Goran Peškir
%T On the exponential Orlicz norms of stopped Brownian motion
%J Studia Mathematica
%D 1995
%P 253-273
%V 117
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-253-273/
%R 10.4064/sm-117-3-253-273
%G en
%F 10_4064_sm_117_3_253_273
Goran Peškir. On the exponential Orlicz norms of stopped Brownian motion. Studia Mathematica, Tome 117 (1995) no. 3, pp. 253-273. doi: 10.4064/sm-117-3-253-273

Cité par Sources :