On the multiplicity function of ergodic group extensions, II
Studia Mathematica, Tome 116 (1995) no. 3, pp. 207-215

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an arbitrary set $A ⊆ ℕ^+$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.
DOI : 10.4064/sm-116-3-207-215

Jakub Kwiatkowski 1

1
@article{10_4064_sm_116_3_207_215,
     author = {Jakub Kwiatkowski},
     title = {On the multiplicity function of ergodic group extensions, {II}},
     journal = {Studia Mathematica},
     pages = {207--215},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-116-3-207-215},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-207-215/}
}
TY  - JOUR
AU  - Jakub Kwiatkowski
TI  - On the multiplicity function of ergodic group extensions, II
JO  - Studia Mathematica
PY  - 1995
SP  - 207
EP  - 215
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-207-215/
DO  - 10.4064/sm-116-3-207-215
LA  - en
ID  - 10_4064_sm_116_3_207_215
ER  - 
%0 Journal Article
%A Jakub Kwiatkowski
%T On the multiplicity function of ergodic group extensions, II
%J Studia Mathematica
%D 1995
%P 207-215
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-207-215/
%R 10.4064/sm-116-3-207-215
%G en
%F 10_4064_sm_116_3_207_215
Jakub Kwiatkowski. On the multiplicity function of ergodic group extensions, II. Studia Mathematica, Tome 116 (1995) no. 3, pp. 207-215. doi: 10.4064/sm-116-3-207-215

Cité par Sources :