On the multiplicity function of ergodic group extensions, II
Studia Mathematica, Tome 116 (1995) no. 3, pp. 207-215
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For an arbitrary set $A ⊆ ℕ^+$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.
@article{10_4064_sm_116_3_207_215,
author = {Jakub Kwiatkowski},
title = {On the multiplicity function of ergodic group extensions, {II}},
journal = {Studia Mathematica},
pages = {207--215},
publisher = {mathdoc},
volume = {116},
number = {3},
year = {1995},
doi = {10.4064/sm-116-3-207-215},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-207-215/}
}
TY - JOUR AU - Jakub Kwiatkowski TI - On the multiplicity function of ergodic group extensions, II JO - Studia Mathematica PY - 1995 SP - 207 EP - 215 VL - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-207-215/ DO - 10.4064/sm-116-3-207-215 LA - en ID - 10_4064_sm_116_3_207_215 ER -
Jakub Kwiatkowski. On the multiplicity function of ergodic group extensions, II. Studia Mathematica, Tome 116 (1995) no. 3, pp. 207-215. doi: 10.4064/sm-116-3-207-215
Cité par Sources :