A rigid space admitting compact operators
Studia Mathematica, Tome 112 (1994) no. 3, pp. 213-228

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. The first complete rigid space was published in 1981 in [2]. Clearly a rigid space is a trivial-dual space, and admits no compact endomorphisms. In this paper a modification of the original construction results in a rigid space which is, however, the domain space of a compact operator, answering a question that was first raised soon after the existence of complete rigid spaces was demonstrated.
DOI : 10.4064/sm-112-3-213-228

Paul Sisson 1

1
@article{10_4064_sm_112_3_213_228,
     author = {Paul Sisson},
     title = {A rigid space admitting compact operators},
     journal = {Studia Mathematica},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-112-3-213-228},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-213-228/}
}
TY  - JOUR
AU  - Paul Sisson
TI  - A rigid space admitting compact operators
JO  - Studia Mathematica
PY  - 1994
SP  - 213
EP  - 228
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-213-228/
DO  - 10.4064/sm-112-3-213-228
LA  - en
ID  - 10_4064_sm_112_3_213_228
ER  - 
%0 Journal Article
%A Paul Sisson
%T A rigid space admitting compact operators
%J Studia Mathematica
%D 1994
%P 213-228
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-213-228/
%R 10.4064/sm-112-3-213-228
%G en
%F 10_4064_sm_112_3_213_228
Paul Sisson. A rigid space admitting compact operators. Studia Mathematica, Tome 112 (1994) no. 3, pp. 213-228. doi: 10.4064/sm-112-3-213-228

Cité par Sources :