Wavelet bases in $L^{p}(ℝ)$
Studia Mathematica, Tome 106 (1993) no. 2, pp. 175-187

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 p ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.
DOI : 10.4064/sm-106-2-175-187
Keywords: basis, $L^p$, multiresolution, unconditional, wavelet

Gustaf Gripenberg 1

1
@article{10_4064_sm_106_2_175_187,
     author = {Gustaf Gripenberg},
     title = {Wavelet bases in $L^{p}(\ensuremath{\mathbb{R}})$},
     journal = {Studia Mathematica},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-106-2-175-187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-175-187/}
}
TY  - JOUR
AU  - Gustaf Gripenberg
TI  - Wavelet bases in $L^{p}(ℝ)$
JO  - Studia Mathematica
PY  - 1993
SP  - 175
EP  - 187
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-175-187/
DO  - 10.4064/sm-106-2-175-187
LA  - en
ID  - 10_4064_sm_106_2_175_187
ER  - 
%0 Journal Article
%A Gustaf Gripenberg
%T Wavelet bases in $L^{p}(ℝ)$
%J Studia Mathematica
%D 1993
%P 175-187
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-175-187/
%R 10.4064/sm-106-2-175-187
%G en
%F 10_4064_sm_106_2_175_187
Gustaf Gripenberg. Wavelet bases in $L^{p}(ℝ)$. Studia Mathematica, Tome 106 (1993) no. 2, pp. 175-187. doi: 10.4064/sm-106-2-175-187

Cité par Sources :