Wavelet bases in $L^{p}(ℝ)$
Studia Mathematica, Tome 106 (1993) no. 2, pp. 175-187
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 p ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.
Keywords:
basis, $L^p$, multiresolution, unconditional, wavelet
Affiliations des auteurs :
Gustaf Gripenberg 1
@article{10_4064_sm_106_2_175_187,
author = {Gustaf Gripenberg},
title = {Wavelet bases in $L^{p}(\ensuremath{\mathbb{R}})$},
journal = {Studia Mathematica},
pages = {175--187},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {1993},
doi = {10.4064/sm-106-2-175-187},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-175-187/}
}
Gustaf Gripenberg. Wavelet bases in $L^{p}(ℝ)$. Studia Mathematica, Tome 106 (1993) no. 2, pp. 175-187. doi: 10.4064/sm-106-2-175-187
Cité par Sources :