Weak invertibility and strong spectrum
Studia Mathematica, Tome 105 (1993) no. 3, pp. 255-269

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A notion of weak invertibility in a unital associative algebra A and a corresponding notion of strong spectrum of an element of A is defined. It is shown that many relationships between the Jacobson radical, the group of invertibles and the spectrum have analogues relating the strong radical, the set of weakly invertible elements and the strong spectrum. The nonunital case is also discussed. A characterization is given of all (submultiplicative) norms on A in which every modular maximal ideal M ⊆ A is closed.
DOI : 10.4064/sm-105-3-255-269
Keywords: radical, norm, spectrum

Michael J. Meyer 1

1
@article{10_4064_sm_105_3_255_269,
     author = {Michael J. Meyer},
     title = {Weak invertibility and strong spectrum},
     journal = {Studia Mathematica},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {1993},
     doi = {10.4064/sm-105-3-255-269},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-3-255-269/}
}
TY  - JOUR
AU  - Michael J. Meyer
TI  - Weak invertibility and strong spectrum
JO  - Studia Mathematica
PY  - 1993
SP  - 255
EP  - 269
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-3-255-269/
DO  - 10.4064/sm-105-3-255-269
LA  - en
ID  - 10_4064_sm_105_3_255_269
ER  - 
%0 Journal Article
%A Michael J. Meyer
%T Weak invertibility and strong spectrum
%J Studia Mathematica
%D 1993
%P 255-269
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-3-255-269/
%R 10.4064/sm-105-3-255-269
%G en
%F 10_4064_sm_105_3_255_269
Michael J. Meyer. Weak invertibility and strong spectrum. Studia Mathematica, Tome 105 (1993) no. 3, pp. 255-269. doi: 10.4064/sm-105-3-255-269

Cité par Sources :