Bessaga's conjecture in unstable Köthe spaces and products
Studia Mathematica, Tome 104 (1993) no. 3, pp. 221-228
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases $(e_n)$ resp. $(f_n)$, then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping $f_n$ to $t_n e_{π(k_n)}$ where $(t_n)$ is a scalar sequence, π is a permutation of ℕ and $(k_n)$ is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods $(U_n)$ consisting of absolutely convex sets one has ∃s ∀p ∃q ∀r $lim_n (d_{n+1}(U_q, U_p))/(d_n(U_r, U_s)) = 0$ where $d_n(U,V)$ denotes the nth Kolmogorov diameter.
@article{10_4064_sm_104_3_221_228,
author = {Zefer Nurlu},
title = {Bessaga's conjecture in unstable {K\"othe} spaces and products},
journal = {Studia Mathematica},
pages = {221--228},
publisher = {mathdoc},
volume = {104},
number = {3},
year = {1993},
doi = {10.4064/sm-104-3-221-228},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-221-228/}
}
TY - JOUR AU - Zefer Nurlu TI - Bessaga's conjecture in unstable Köthe spaces and products JO - Studia Mathematica PY - 1993 SP - 221 EP - 228 VL - 104 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-221-228/ DO - 10.4064/sm-104-3-221-228 LA - en ID - 10_4064_sm_104_3_221_228 ER -
Zefer Nurlu. Bessaga's conjecture in unstable Köthe spaces and products. Studia Mathematica, Tome 104 (1993) no. 3, pp. 221-228. doi: 10.4064/sm-104-3-221-228
Cité par Sources :