Bessaga's conjecture in unstable Köthe spaces and products
Studia Mathematica, Tome 104 (1993) no. 3, pp. 221-228

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases $(e_n)$ resp. $(f_n)$, then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping $f_n$ to $t_n e_{π(k_n)}$ where $(t_n)$ is a scalar sequence, π is a permutation of ℕ and $(k_n)$ is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods $(U_n)$ consisting of absolutely convex sets one has ∃s ∀p ∃q ∀r $lim_n (d_{n+1}(U_q, U_p))/(d_n(U_r, U_s)) = 0$ where $d_n(U,V)$ denotes the nth Kolmogorov diameter.
DOI : 10.4064/sm-104-3-221-228

Zefer Nurlu 1

1
@article{10_4064_sm_104_3_221_228,
     author = {Zefer Nurlu},
     title = {Bessaga's conjecture in unstable {K\"othe} spaces and products},
     journal = {Studia Mathematica},
     pages = {221--228},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {1993},
     doi = {10.4064/sm-104-3-221-228},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-221-228/}
}
TY  - JOUR
AU  - Zefer Nurlu
TI  - Bessaga's conjecture in unstable Köthe spaces and products
JO  - Studia Mathematica
PY  - 1993
SP  - 221
EP  - 228
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-221-228/
DO  - 10.4064/sm-104-3-221-228
LA  - en
ID  - 10_4064_sm_104_3_221_228
ER  - 
%0 Journal Article
%A Zefer Nurlu
%T Bessaga's conjecture in unstable Köthe spaces and products
%J Studia Mathematica
%D 1993
%P 221-228
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-221-228/
%R 10.4064/sm-104-3-221-228
%G en
%F 10_4064_sm_104_3_221_228
Zefer Nurlu. Bessaga's conjecture in unstable Köthe spaces and products. Studia Mathematica, Tome 104 (1993) no. 3, pp. 221-228. doi: 10.4064/sm-104-3-221-228

Cité par Sources :