The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$
Studia Mathematica, Tome 104 (1993) no. 2, pp. 111-123

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of $c_0$. Then the Bochner space $L^1(m;X)$ is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.
DOI : 10.4064/sm-104-2-111-123
Keywords: Banach space, isomorphic copy of $c_0$, spaces of vector measures, Bochner integrable functions, Radon-Nikodym property, uncomplemented subspace

L. Drewnowski 1 ;  1

1
@article{10_4064_sm_104_2_111_123,
     author = {L. Drewnowski and  },
     title = {The problem of complementability for some spaces of vector measures of bounded variation with values in {Banach} spaces containing copies of $c_{0}$},
     journal = {Studia Mathematica},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-104-2-111-123},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-111-123/}
}
TY  - JOUR
AU  - L. Drewnowski
AU  -  
TI  - The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$
JO  - Studia Mathematica
PY  - 1993
SP  - 111
EP  - 123
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-111-123/
DO  - 10.4064/sm-104-2-111-123
LA  - en
ID  - 10_4064_sm_104_2_111_123
ER  - 
%0 Journal Article
%A L. Drewnowski
%A  
%T The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$
%J Studia Mathematica
%D 1993
%P 111-123
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-111-123/
%R 10.4064/sm-104-2-111-123
%G en
%F 10_4064_sm_104_2_111_123
L. Drewnowski;  . The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$. Studia Mathematica, Tome 104 (1993) no. 2, pp. 111-123. doi: 10.4064/sm-104-2-111-123

Cité par Sources :