L-summands in their biduals have Pełczyński's property (V*)
Studia Mathematica, Tome 104 (1993) no. 1, pp. 91-98

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Banach spaces which are L-summands in their biduals - for example $l^1$, the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński's property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of $l^1$.
DOI : 10.4064/sm-104-1-91-98

Hermann Pfitzner 1

1
@article{10_4064_sm_104_1_91_98,
     author = {Hermann Pfitzner},
     title = {L-summands in their biduals have {Pe{\l}czy\'nski's} property {(V*)}},
     journal = {Studia Mathematica},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-104-1-91-98},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-91-98/}
}
TY  - JOUR
AU  - Hermann Pfitzner
TI  - L-summands in their biduals have Pełczyński's property (V*)
JO  - Studia Mathematica
PY  - 1993
SP  - 91
EP  - 98
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-91-98/
DO  - 10.4064/sm-104-1-91-98
LA  - pl
ID  - 10_4064_sm_104_1_91_98
ER  - 
%0 Journal Article
%A Hermann Pfitzner
%T L-summands in their biduals have Pełczyński's property (V*)
%J Studia Mathematica
%D 1993
%P 91-98
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-91-98/
%R 10.4064/sm-104-1-91-98
%G pl
%F 10_4064_sm_104_1_91_98
Hermann Pfitzner. L-summands in their biduals have Pełczyński's property (V*). Studia Mathematica, Tome 104 (1993) no. 1, pp. 91-98. doi: 10.4064/sm-104-1-91-98

Cité par Sources :