Rank and spectral multiplicity
Studia Mathematica, Tome 102 (1992) no. 2, pp. 121-144
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.
@article{10_4064_sm_102_2_121_144,
author = {S\'ebastien Ferenczi},
title = {Rank and spectral multiplicity},
journal = {Studia Mathematica},
pages = {121--144},
year = {1992},
volume = {102},
number = {2},
doi = {10.4064/sm-102-2-121-144},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-121-144/}
}
Sébastien Ferenczi. Rank and spectral multiplicity. Studia Mathematica, Tome 102 (1992) no. 2, pp. 121-144. doi: 10.4064/sm-102-2-121-144
Cité par Sources :