Rank and spectral multiplicity
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 102 (1992) no. 2, pp. 121-144
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
spectral multiplicity, rank, Morse cocycles
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Sébastien Ferenczi 1
@article{10_4064_sm_102_2_121_144,
     author = {S\'ebastien Ferenczi},
     title = {Rank and spectral multiplicity},
     journal = {Studia Mathematica},
     pages = {121--144},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1992},
     doi = {10.4064/sm-102-2-121-144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-121-144/}
}
                      
                      
                    Sébastien Ferenczi. Rank and spectral multiplicity. Studia Mathematica, Tome 102 (1992) no. 2, pp. 121-144. doi: 10.4064/sm-102-2-121-144
Cité par Sources :
