Rank and spectral multiplicity
Studia Mathematica, Tome 102 (1992) no. 2, pp. 121-144

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.
DOI : 10.4064/sm-102-2-121-144
Keywords: spectral multiplicity, rank, Morse cocycles

Sébastien Ferenczi 1

1
@article{10_4064_sm_102_2_121_144,
     author = {S\'ebastien Ferenczi},
     title = {Rank and spectral multiplicity},
     journal = {Studia Mathematica},
     pages = {121--144},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1992},
     doi = {10.4064/sm-102-2-121-144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-121-144/}
}
TY  - JOUR
AU  - Sébastien Ferenczi
TI  - Rank and spectral multiplicity
JO  - Studia Mathematica
PY  - 1992
SP  - 121
EP  - 144
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-121-144/
DO  - 10.4064/sm-102-2-121-144
LA  - en
ID  - 10_4064_sm_102_2_121_144
ER  - 
%0 Journal Article
%A Sébastien Ferenczi
%T Rank and spectral multiplicity
%J Studia Mathematica
%D 1992
%P 121-144
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-121-144/
%R 10.4064/sm-102-2-121-144
%G en
%F 10_4064_sm_102_2_121_144
Sébastien Ferenczi. Rank and spectral multiplicity. Studia Mathematica, Tome 102 (1992) no. 2, pp. 121-144. doi: 10.4064/sm-102-2-121-144

Cité par Sources :