Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
Studia Mathematica, Tome 101 (1991) no. 1, pp. 33-68

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).
DOI : 10.4064/sm-101-1-33-68

Ewa Damek 1

1
@article{10_4064_sm_101_1_33_68,
     author = {Ewa Damek},
     title = {Maximal functions related to subelliptic operators invariant under an action of a solvable {Lie} group},
     journal = {Studia Mathematica},
     pages = {33--68},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {1991},
     doi = {10.4064/sm-101-1-33-68},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-101-1-33-68/}
}
TY  - JOUR
AU  - Ewa Damek
TI  - Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
JO  - Studia Mathematica
PY  - 1991
SP  - 33
EP  - 68
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-101-1-33-68/
DO  - 10.4064/sm-101-1-33-68
LA  - en
ID  - 10_4064_sm_101_1_33_68
ER  - 
%0 Journal Article
%A Ewa Damek
%T Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
%J Studia Mathematica
%D 1991
%P 33-68
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-101-1-33-68/
%R 10.4064/sm-101-1-33-68
%G en
%F 10_4064_sm_101_1_33_68
Ewa Damek. Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group. Studia Mathematica, Tome 101 (1991) no. 1, pp. 33-68. doi: 10.4064/sm-101-1-33-68

Cité par Sources :