Ergodic properties of group extensions of dynamical systems with discrete spectra
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 101 (1991) no. 1, pp. 19-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Ergodic group extensions of a dynamical system with discrete spectrum are considered. The elements of the centralizer of such a system are described. The main result says that each invariant sub-σ-algebra is determined by a compact subgroup in the centralizer of a normal natural factor.
            
            
            
          
        
      @article{10_4064_sm_101_1_19_31,
     author = {Mieczys{\l}aw K. Mentzen},
     title = {Ergodic properties of group extensions of dynamical systems with discrete spectra},
     journal = {Studia Mathematica},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {1991},
     doi = {10.4064/sm-101-1-19-31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-101-1-19-31/}
}
                      
                      
                    TY - JOUR AU - Mieczysław K. Mentzen TI - Ergodic properties of group extensions of dynamical systems with discrete spectra JO - Studia Mathematica PY - 1991 SP - 19 EP - 31 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-101-1-19-31/ DO - 10.4064/sm-101-1-19-31 LA - en ID - 10_4064_sm_101_1_19_31 ER -
%0 Journal Article %A Mieczysław K. Mentzen %T Ergodic properties of group extensions of dynamical systems with discrete spectra %J Studia Mathematica %D 1991 %P 19-31 %V 101 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-101-1-19-31/ %R 10.4064/sm-101-1-19-31 %G en %F 10_4064_sm_101_1_19_31
Mieczysław K. Mentzen. Ergodic properties of group extensions of dynamical systems with discrete spectra. Studia Mathematica, Tome 101 (1991) no. 1, pp. 19-31. doi: 10.4064/sm-101-1-19-31
Cité par Sources :
