A new convexity property that implies a fixed point property for $L_{1}$
Studia Mathematica, Tome 100 (1991) no. 2, pp. 95-108

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result holds. The Chebyshev centre of any norm bounded, convergence locally in measure compact subset of L₁ must be norm compact. Immediately from normal structure, we get a new proof of a fixed point theorem for L₁ due to Lami Dozo and Turpin.
DOI : 10.4064/sm-100-2-95-108
Keywords: uniform Kadec-Klee property, convergence in measure compact sets, convex sets, normal structure, Lebesgue function spaces, fixed point, nonexpansive mapping, Chebyshev centre

Chris Lennard 1

1
@article{10_4064_sm_100_2_95_108,
     author = {Chris Lennard},
     title = {A new convexity property that implies a fixed point property for $L_{1}$},
     journal = {Studia Mathematica},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {1991},
     doi = {10.4064/sm-100-2-95-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-95-108/}
}
TY  - JOUR
AU  - Chris Lennard
TI  - A new convexity property that implies a fixed point property for $L_{1}$
JO  - Studia Mathematica
PY  - 1991
SP  - 95
EP  - 108
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-95-108/
DO  - 10.4064/sm-100-2-95-108
LA  - en
ID  - 10_4064_sm_100_2_95_108
ER  - 
%0 Journal Article
%A Chris Lennard
%T A new convexity property that implies a fixed point property for $L_{1}$
%J Studia Mathematica
%D 1991
%P 95-108
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-95-108/
%R 10.4064/sm-100-2-95-108
%G en
%F 10_4064_sm_100_2_95_108
Chris Lennard. A new convexity property that implies a fixed point property for $L_{1}$. Studia Mathematica, Tome 100 (1991) no. 2, pp. 95-108. doi: 10.4064/sm-100-2-95-108

Cité par Sources :