Inequalities for exponentials in Banach algebras
Studia Mathematica, Tome 100 (1991) no. 1, pp. 87-94
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

For commuting elements x, y of a unital Banach algebra ℬ it is clear that $∥e^{x+y}∥ ≤ ∥e^x∥ ∥e^y∥$. On the order hand, M. Taylor has shown that this inequality remains valid for a self-adjoint operator x and a skew-adjoint operator y, without the assumption that they commute. In this paper we obtain similar inequalities under conditions that lie between these extremes. The inequalities are used to deduce growth estimates of the form $∥e'^{}∥ ≤ c(1 + |ξ|〉^s$ for all $ξ ∈ R^m$, where $x = (x_1,..., x_m) ∈ ℬ^m$ and c, s are constants.
@article{10_4064_sm_100_1_87_94,
     author = {A. J. Pryde},
     title = {Inequalities for exponentials in {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {87--94},
     year = {1991},
     volume = {100},
     number = {1},
     doi = {10.4064/sm-100-1-87-94},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-87-94/}
}
TY  - JOUR
AU  - A. J. Pryde
TI  - Inequalities for exponentials in Banach algebras
JO  - Studia Mathematica
PY  - 1991
SP  - 87
EP  - 94
VL  - 100
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-87-94/
DO  - 10.4064/sm-100-1-87-94
LA  - en
ID  - 10_4064_sm_100_1_87_94
ER  - 
%0 Journal Article
%A A. J. Pryde
%T Inequalities for exponentials in Banach algebras
%J Studia Mathematica
%D 1991
%P 87-94
%V 100
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-87-94/
%R 10.4064/sm-100-1-87-94
%G en
%F 10_4064_sm_100_1_87_94
A. J. Pryde. Inequalities for exponentials in Banach algebras. Studia Mathematica, Tome 100 (1991) no. 1, pp. 87-94. doi: 10.4064/sm-100-1-87-94

Cité par Sources :