Automorphisms with finite exact uniform rank
Studia Mathematica, Tome 100 (1991) no. 1, pp. 13-24

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The notion of exact uniform rank, EUR, of an automorphism of a probability Lebesgue space is defined. It is shown that each ergodic automorphism with finite EUR is finite extension of some automorphism with rational discrete spectrum. Moreover, for automorphisms with finite EUR, the upper bounds of EUR of their factors and ergodic iterations are computed.
DOI : 10.4064/sm-100-1-13-24

Mieczysław K. Mentzen 1

1
@article{10_4064_sm_100_1_13_24,
     author = {Mieczys{\l}aw K. Mentzen},
     title = {Automorphisms with finite exact uniform rank},
     journal = {Studia Mathematica},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {1991},
     doi = {10.4064/sm-100-1-13-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-13-24/}
}
TY  - JOUR
AU  - Mieczysław K. Mentzen
TI  - Automorphisms with finite exact uniform rank
JO  - Studia Mathematica
PY  - 1991
SP  - 13
EP  - 24
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-13-24/
DO  - 10.4064/sm-100-1-13-24
LA  - en
ID  - 10_4064_sm_100_1_13_24
ER  - 
%0 Journal Article
%A Mieczysław K. Mentzen
%T Automorphisms with finite exact uniform rank
%J Studia Mathematica
%D 1991
%P 13-24
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-13-24/
%R 10.4064/sm-100-1-13-24
%G en
%F 10_4064_sm_100_1_13_24
Mieczysław K. Mentzen. Automorphisms with finite exact uniform rank. Studia Mathematica, Tome 100 (1991) no. 1, pp. 13-24. doi: 10.4064/sm-100-1-13-24

Cité par Sources :