The order of the Hopf bundle on projective Stiefel manifolds
Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 225-233
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The projective Stiefel manifold $X_{n,k}$ has a canonical line bundle $ξ_{n,k}$, called the Hopf bundle. The order of $cξ_{n,k}$, the complexification of $ξ_{n,k}$, as an element of (the abelian group) $K(X_{n,k})$, has been determined in [3], [5], [6]. The main result in the present work is that this order equals the order of $ξ_{n,k}$ itself, as an element of $KO(X_{n,k})$, for $n ≡ 0,± 1 (mod 8), or for k in the "upper range for n" (approximately $k ≥ n/2$). Certain applications are indicated.
Affiliations des auteurs :
Parameswaran Sankaran 1 ; Peter Zvengrowski 1
@article{10_4064_fm_1999_161_1_2_1_225_233,
author = {Parameswaran Sankaran and Peter Zvengrowski},
title = {The order of the {Hopf} bundle on projective {Stiefel} manifolds},
journal = {Fundamenta Mathematicae},
pages = {225--233},
publisher = {mathdoc},
volume = {161},
number = {1},
year = {1999},
doi = {10.4064/fm_1999_161_1-2_1_225_233},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_161_1-2_1_225_233/}
}
TY - JOUR AU - Parameswaran Sankaran AU - Peter Zvengrowski TI - The order of the Hopf bundle on projective Stiefel manifolds JO - Fundamenta Mathematicae PY - 1999 SP - 225 EP - 233 VL - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_161_1-2_1_225_233/ DO - 10.4064/fm_1999_161_1-2_1_225_233 LA - en ID - 10_4064_fm_1999_161_1_2_1_225_233 ER -
%0 Journal Article %A Parameswaran Sankaran %A Peter Zvengrowski %T The order of the Hopf bundle on projective Stiefel manifolds %J Fundamenta Mathematicae %D 1999 %P 225-233 %V 161 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_161_1-2_1_225_233/ %R 10.4064/fm_1999_161_1-2_1_225_233 %G en %F 10_4064_fm_1999_161_1_2_1_225_233
Parameswaran Sankaran; Peter Zvengrowski. The order of the Hopf bundle on projective Stiefel manifolds. Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 225-233. doi: 10.4064/fm_1999_161_1-2_1_225_233
Cité par Sources :