Bohr compactifications of discrete structures
Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 101-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following theorem: Given a⊆ω and $1 ≤ α ω_1^{CK}$, if for some $η ℵ_1$ and all u ∈ WO of length η, a is $Σ _α^0(u)$, then a is $Σ_α^0$.} We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: {$Σ_1^1 $-Turing-determinacy implies the existence of $0^{#}$}.
Affiliations des auteurs :
Joan E. Hart 1 ; Kenneth Kunen 1
@article{10_4064_fm_1999_160_2_1_101_151,
author = {Joan E. Hart and Kenneth Kunen},
title = {Bohr compactifications of discrete structures},
journal = {Fundamenta Mathematicae},
pages = {101--151},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {1999},
doi = {10.4064/fm_1999_160_2_1_101_151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/}
}
TY - JOUR AU - Joan E. Hart AU - Kenneth Kunen TI - Bohr compactifications of discrete structures JO - Fundamenta Mathematicae PY - 1999 SP - 101 EP - 151 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/ DO - 10.4064/fm_1999_160_2_1_101_151 LA - en ID - 10_4064_fm_1999_160_2_1_101_151 ER -
%0 Journal Article %A Joan E. Hart %A Kenneth Kunen %T Bohr compactifications of discrete structures %J Fundamenta Mathematicae %D 1999 %P 101-151 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/ %R 10.4064/fm_1999_160_2_1_101_151 %G en %F 10_4064_fm_1999_160_2_1_101_151
Joan E. Hart; Kenneth Kunen. Bohr compactifications of discrete structures. Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 101-151. doi: 10.4064/fm_1999_160_2_1_101_151
Cité par Sources :