Bohr compactifications of discrete structures
Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 101-151.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the following theorem: Given a⊆ω and $1 ≤ α ω_1^{CK}$, if for some $η ℵ_1$ and all u ∈ WO of length η, a is $Σ _α^0(u)$, then a is $Σ_α^0$.} We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: {$Σ_1^1 $-Turing-determinacy implies the existence of $0^{#}$}.
DOI : 10.4064/fm_1999_160_2_1_101_151

Joan E. Hart 1 ; Kenneth Kunen 1

1
@article{10_4064_fm_1999_160_2_1_101_151,
     author = {Joan E. Hart and Kenneth Kunen},
     title = {Bohr compactifications of discrete structures},
     journal = {Fundamenta Mathematicae},
     pages = {101--151},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {1999},
     doi = {10.4064/fm_1999_160_2_1_101_151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/}
}
TY  - JOUR
AU  - Joan E. Hart
AU  - Kenneth Kunen
TI  - Bohr compactifications of discrete structures
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 101
EP  - 151
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/
DO  - 10.4064/fm_1999_160_2_1_101_151
LA  - en
ID  - 10_4064_fm_1999_160_2_1_101_151
ER  - 
%0 Journal Article
%A Joan E. Hart
%A Kenneth Kunen
%T Bohr compactifications of discrete structures
%J Fundamenta Mathematicae
%D 1999
%P 101-151
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/
%R 10.4064/fm_1999_160_2_1_101_151
%G en
%F 10_4064_fm_1999_160_2_1_101_151
Joan E. Hart; Kenneth Kunen. Bohr compactifications of discrete structures. Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 101-151. doi : 10.4064/fm_1999_160_2_1_101_151. http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_2_1_101_151/

Cité par Sources :