On $z^\circ$-ideals in $C(X)$
Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 15-25.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An ideal I in a commutative ring R is called a z°-ideal if I consists of zero divisors and for each a ∈ I the intersection of all minimal prime ideals containing a is contained in I. We characterize topological spaces X for which z-ideals and z°-ideals coincide in , or equivalently, the sum of any two ideals consisting entirely of zero divisors consists entirely of zero divisors. Basically disconnected spaces, extremally disconnected and P-spaces are characterized in terms of z°-ideals. Finally, we construct two topological almost P-spaces X and Y which are not P-spaces and such that in every prime z°-ideal is either a minimal prime ideal or a maximal ideal and in C(Y) there exists a prime z°-ideal which is neither a minimal prime ideal nor a maximal ideal.
DOI : 10.4064/fm_1999_160_1_1_15_25

F. Azarpanah 1 ; O. A. S. Karamzadeh 1 ; A. Rezai Aliabad 1

1
@article{10_4064_fm_1999_160_1_1_15_25,
     author = {F. Azarpanah and O. A. S. Karamzadeh and A. Rezai Aliabad},
     title = {On $z^\circ$-ideals in $C(X)$},
     journal = {Fundamenta Mathematicae},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {1999},
     doi = {10.4064/fm_1999_160_1_1_15_25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_1_1_15_25/}
}
TY  - JOUR
AU  - F. Azarpanah
AU  - O. A. S. Karamzadeh
AU  - A. Rezai Aliabad
TI  - On $z^\circ$-ideals in $C(X)$
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 15
EP  - 25
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_1_1_15_25/
DO  - 10.4064/fm_1999_160_1_1_15_25
LA  - en
ID  - 10_4064_fm_1999_160_1_1_15_25
ER  - 
%0 Journal Article
%A F. Azarpanah
%A O. A. S. Karamzadeh
%A A. Rezai Aliabad
%T On $z^\circ$-ideals in $C(X)$
%J Fundamenta Mathematicae
%D 1999
%P 15-25
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_1_1_15_25/
%R 10.4064/fm_1999_160_1_1_15_25
%G en
%F 10_4064_fm_1999_160_1_1_15_25
F. Azarpanah; O. A. S. Karamzadeh; A. Rezai Aliabad. On $z^\circ$-ideals in $C(X)$. Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 15-25. doi : 10.4064/fm_1999_160_1_1_15_25. http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_160_1_1_15_25/

Cité par Sources :