On the set-theoretic strength of the $n$-compactness of generalized Cantor cubes
Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 241-252.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate, in set theory without the Axiom of Choice $\mathbf{\mathsf{AC}}$, the set-theoretic strength of the statement $Q(n)$: For every infinite set $X$, the Tychonoff product $2^X$, where $2=\{0,1\}$ has the discrete topology, is $n$-compact, where $n=2,3,4,5$ (definitions are given in Section 1). We establish the following results: (1) For $n=3,4,5$, $Q(n)$ is, in $\mathbf{\mathsf{ZF}}$ (Zermelo–Fraenkel set theory minus $\mathbf{\mathsf{AC}}$), equivalent to the Boolean Prime Ideal Theorem $\mathbf{\mathsf{BPI}}$, whereas (2) $Q(2)$ is strictly weaker than $\mathbf{\mathsf{BPI}}$ in $\mathbf{\mathsf{ZFA}}$ set theory (Zermelo–Fraenkel set theory with the Axiom of Extensionality weakened in order to allow atoms). This settles the open problem in Tachtsis (2012) on the relation of $Q(n)$, $n=2,3,4,5$, to $\mathbf{\mathsf{BPI}}$.
DOI : 10.4064/fm961-1-2016
Keywords: investigate set theory without axiom choice mathbf mathsf set theoretic strength statement every infinite set tychonoff product where has discrete topology n compact where definitions given section establish following results mathbf mathsf zermelo fraenkel set theory minus mathbf mathsf equivalent boolean prime ideal theorem mathbf mathsf bpi whereas strictly weaker mathbf mathsf bpi mathbf mathsf zfa set theory zermelo fraenkel set theory axiom extensionality weakened order allow atoms settles problem tachtsis relation nbsp mathbf mathsf bpi

Paul Howard 1 ; Eleftherios Tachtsis 2

1 Department of Mathematics Eastern Michigan University Ypsilanti, MI 48197, U.S.A.
2 Department of Mathematics University of the Aegean Karlovassi 83200, Samos, Greece
@article{10_4064_fm961_1_2016,
     author = {Paul Howard and Eleftherios Tachtsis},
     title = {On the set-theoretic strength of the $n$-compactness of generalized {Cantor} cubes},
     journal = {Fundamenta Mathematicae},
     pages = {241--252},
     publisher = {mathdoc},
     volume = {234},
     number = {3},
     year = {2016},
     doi = {10.4064/fm961-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm961-1-2016/}
}
TY  - JOUR
AU  - Paul Howard
AU  - Eleftherios Tachtsis
TI  - On the set-theoretic strength of the $n$-compactness of generalized Cantor cubes
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 241
EP  - 252
VL  - 234
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm961-1-2016/
DO  - 10.4064/fm961-1-2016
LA  - en
ID  - 10_4064_fm961_1_2016
ER  - 
%0 Journal Article
%A Paul Howard
%A Eleftherios Tachtsis
%T On the set-theoretic strength of the $n$-compactness of generalized Cantor cubes
%J Fundamenta Mathematicae
%D 2016
%P 241-252
%V 234
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm961-1-2016/
%R 10.4064/fm961-1-2016
%G en
%F 10_4064_fm961_1_2016
Paul Howard; Eleftherios Tachtsis. On the set-theoretic strength of the $n$-compactness of generalized Cantor cubes. Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 241-252. doi : 10.4064/fm961-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm961-1-2016/

Cité par Sources :