Local cohomological properties of homogeneous ANR compacta
Fundamenta Mathematicae, Tome 233 (2016) no. 3, pp. 257-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In accordance with the Bing–Borsuk conjecture, we show that if $X$ is an $n$-dimensional homogeneous metric ANR continuum and $x\in X$, then there is a local basis at $x$ consisting of connected open sets $U$ such that the cohomological properties of $\overline U$ and ${\rm bd}\,U$ are similar to the properties of the closed ball $\mathbb B^n\subset \mathbb R^n$ and its boundary $\mathbb S^{n-1}$. We also prove that a metric ANR compactum $X$ of dimension $n$ is dimensionally full-valued if and only if the group $H_n(X,X\setminus x;\mathbb Z)$ is not trivial for some $x\in X$. This implies that every $3$-dimensional homogeneous metric ANR compactum is dimensionally full-valued.
DOI : 10.4064/fm93-12-2015
Keywords: accordance bing borsuk conjecture n dimensional homogeneous metric anr continuum there local basis consisting connected sets cohomological properties overline similar properties closed ball mathbb subset mathbb its boundary mathbb n prove metric anr compactum dimension dimensionally full valued only group x setminus mathbb trivial implies every dimensional homogeneous metric anr compactum dimensionally full valued

V. Valov 1

1 Department of Computer Science and Mathematics Nipissing University 100 College Drive, P.O. Box 5002 North Bay, ON, P1B 8L7, Canada
@article{10_4064_fm93_12_2015,
     author = {V. Valov},
     title = {Local cohomological properties of homogeneous {ANR} compacta},
     journal = {Fundamenta Mathematicae},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {233},
     number = {3},
     year = {2016},
     doi = {10.4064/fm93-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm93-12-2015/}
}
TY  - JOUR
AU  - V. Valov
TI  - Local cohomological properties of homogeneous ANR compacta
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 257
EP  - 270
VL  - 233
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm93-12-2015/
DO  - 10.4064/fm93-12-2015
LA  - en
ID  - 10_4064_fm93_12_2015
ER  - 
%0 Journal Article
%A V. Valov
%T Local cohomological properties of homogeneous ANR compacta
%J Fundamenta Mathematicae
%D 2016
%P 257-270
%V 233
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm93-12-2015/
%R 10.4064/fm93-12-2015
%G en
%F 10_4064_fm93_12_2015
V. Valov. Local cohomological properties of homogeneous ANR compacta. Fundamenta Mathematicae, Tome 233 (2016) no. 3, pp. 257-270. doi : 10.4064/fm93-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/fm93-12-2015/

Cité par Sources :