Preperiodic dynatomic curves for $z\mapsto z^d+c$
Fundamenta Mathematicae, Tome 233 (2016) no. 1, pp. 37-69
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The preperiodic dynatomic curve $\mathcal {X}_{n,p}$ is the closure in $\mathbb C^2$ of the set of $(c,z)$ such that $z$ is a preperiodic point of the polynomial $z \mapsto z^d+c$ with preperiod $n$ and period $p$ ($n,p\geq 1$). We prove that each $\mathcal {X}_{n,p}$ has exactly $d-1$ irreducible components, which are all smooth and have pairwise transverse intersections at the singular points of $\mathcal {X}_{n,p}$. We also compute the genus of each component and the Galois group of the defining polynomial of $\mathcal {X}_{n,p}$.
Keywords:
preperiodic dynatomic curve mathcal closure mathbb set preperiodic point polynomial mapsto preperiod period geq prove each mathcal has exactly d irreducible components which smooth have pairwise transverse intersections singular points nbsp mathcal compute genus each component galois group defining polynomial mathcal
Affiliations des auteurs :
Yan Gao 1
@article{10_4064_fm91_12_2015,
author = {Yan Gao},
title = {Preperiodic dynatomic curves for $z\mapsto z^d+c$},
journal = {Fundamenta Mathematicae},
pages = {37--69},
publisher = {mathdoc},
volume = {233},
number = {1},
year = {2016},
doi = {10.4064/fm91-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm91-12-2015/}
}
Yan Gao. Preperiodic dynatomic curves for $z\mapsto z^d+c$. Fundamenta Mathematicae, Tome 233 (2016) no. 1, pp. 37-69. doi: 10.4064/fm91-12-2015
Cité par Sources :