A characterization of $\boldsymbol {\Sigma }_{2}^{1}$ sets
Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 45-49
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that a subset $X$ of a given Polish space $\mathcal X$ is $\boldsymbol{\Sigma}_{2}^{1}$
iff there is an open set $O\subseteq\mathcal X\times[\omega]^{\omega}$ such
that $$
X=\{x\in\mathcal X\colon\exists r\in[\omega]^{\omega}\ \{x\}\times[r]^{\omega}\subseteq O\}.
$$
This implies that if a set $U\subseteq\omega^{\omega}\times(\mathcal X\times[\omega]^{\omega})$
is universal for $G_{\delta}$ subsets of $\mathcal X\times[\omega]^{\omega}$,
then the set of all $(v,x)\in\omega^{\omega}\times\mathcal X$ such that the
section $U_{vx}$ has nonempty interior in the Ellentuck topology
is universal for $\boldsymbol{\Sigma}_{2}^{1}$ subsets of $\mathcal X$.
It follows that the $\sigma$-ideal of meager sets
in the Ellentuck topology is not $\boldsymbol{\Sigma}_{2}^{1}$
on $G_{\delta}$, a fact established recently by Sabok (2012)
with the help of Kleene’s Recursion Theorem.
Keywords:
subset given polish space mathcal boldsymbol sigma there set subseteq mathcal times omega omega mathcal colon exists omega omega times omega subseteq implies set subseteq omega omega times mathcal times omega omega universal delta subsets mathcal times omega omega set omega omega times mathcal section has nonempty interior ellentuck topology universal boldsymbol sigma subsets mathcal follows nbsp sigma ideal meager sets ellentuck topology boldsymbol sigma delta established recently sabok help kleene recursion theorem
Affiliations des auteurs :
Janusz Pawlikowski  1
@article{10_4064_fm61_4_2016,
author = {Janusz Pawlikowski},
title = {A characterization of $\boldsymbol {\Sigma }_{2}^{1}$ sets},
journal = {Fundamenta Mathematicae},
pages = {45--49},
year = {2017},
volume = {236},
number = {1},
doi = {10.4064/fm61-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm61-4-2016/}
}
Janusz Pawlikowski. A characterization of $\boldsymbol {\Sigma }_{2}^{1}$ sets. Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 45-49. doi: 10.4064/fm61-4-2016
Cité par Sources :