Structurable equivalence relations
Fundamenta Mathematicae, Tome 242 (2018) no. 2, pp. 109-185.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a class $\mathcal K$ of countable relational structures, a countable Borel equivalence relation $E$ is said to be $\mathcal K$-structurable if there is a Borel way to put a structure in $\mathcal K$ on each $E$-equivalence class. We study in this paper the global structure of the classes of $\mathcal K$-structurable equivalence relations for various $\mathcal K$. We show that $\mathcal K$-structurability interacts well with several kinds of Borel homomorphisms and reductions commonly used in the classification of countable Borel equivalence relations. We consider the poset of classes of $\mathcal K$-structurable equivalence relations for various $\mathcal K$, under inclusion, and show that it is a distributive lattice; this implies that the Borel reducibility preordering among countable Borel equivalence relations contains a large sublattice. Finally, we consider the effect on $\mathcal K$-structurability of various model-theoretic properties of $\mathcal K$. In particular, we characterize the $\mathcal K$ such that every $\mathcal K$-structurable equivalence relation is smooth, answering a question of Marks.
DOI : 10.4064/fm428-7-2017
Mots-clés : class mathcal countable relational structures countable borel equivalence relation said mathcal k structurable there borel put structure nbsp mathcal each e equivalence class study paper global structure classes mathcal k structurable equivalence relations various mathcal mathcal k structurability interacts several kinds borel homomorphisms reductions commonly classification countable borel equivalence relations consider poset classes mathcal k structurable equivalence relations various mathcal under inclusion distributive lattice implies borel reducibility preordering among countable borel equivalence relations contains large sublattice finally consider effect mathcal k structurability various model theoretic properties mathcal particular characterize mathcal every mathcal k structurable equivalence relation smooth answering question marks

Ruiyuan Chen 1 ; Alexander S. Kechris 1

1 Department of Mathematics California Institute of Technology Pasadena, CA 91125, U.S.A.
@article{10_4064_fm428_7_2017,
     author = {Ruiyuan Chen and Alexander S. Kechris},
     title = {Structurable equivalence relations},
     journal = {Fundamenta Mathematicae},
     pages = {109--185},
     publisher = {mathdoc},
     volume = {242},
     number = {2},
     year = {2018},
     doi = {10.4064/fm428-7-2017},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm428-7-2017/}
}
TY  - JOUR
AU  - Ruiyuan Chen
AU  - Alexander S. Kechris
TI  - Structurable equivalence relations
JO  - Fundamenta Mathematicae
PY  - 2018
SP  - 109
EP  - 185
VL  - 242
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm428-7-2017/
DO  - 10.4064/fm428-7-2017
LA  - fr
ID  - 10_4064_fm428_7_2017
ER  - 
%0 Journal Article
%A Ruiyuan Chen
%A Alexander S. Kechris
%T Structurable equivalence relations
%J Fundamenta Mathematicae
%D 2018
%P 109-185
%V 242
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm428-7-2017/
%R 10.4064/fm428-7-2017
%G fr
%F 10_4064_fm428_7_2017
Ruiyuan Chen; Alexander S. Kechris. Structurable equivalence relations. Fundamenta Mathematicae, Tome 242 (2018) no. 2, pp. 109-185. doi : 10.4064/fm428-7-2017. http://geodesic.mathdoc.fr/articles/10.4064/fm428-7-2017/

Cité par Sources :