Borel complexity and potential canonical Scott sentences
Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 101-147.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define and investigate HC-forcing invariant formulas of set theory, whose interpretations in the hereditarily countable sets are well-behaved under forcing extensions. This leads naturally to a notion of cardinality $\|\varPhi\|$ for sentences $\varPhi$ of $L_{\omega_1\omega}$ which counts the number of sentences of $L_{\infty\omega}$ that, in some forcing extension, become a canonical Scott sentence of a model of $\varPhi$. We show this cardinal bounds the complexity of $(\operatorname{Mod}(\varPhi), {\cong})$, the class of models of $\varPhi$ with universe $\omega$, by proving that $(\operatorname{Mod}(\varPhi),{\cong})$ is not Borel reducible to $(\operatorname{Mod}(\varPsi),{\cong})$ whenever $\|\varPsi\| \lt \|\varPhi\|$. Using these tools, we analyze the complexity of the class of countable models of four complete, first order theories $T$ for which $(\operatorname{Mod}(T),{\cong})$ is properly analytic, yet admit very different behavior. We prove that both “binary splitting, refining equivalence relations” and Koerwien’s example (2011) of an eni-depth 2, $\omega$-stable theory have $(\operatorname{Mod}(T),{\cong})$ non-Borel, yet neither is Borel complete. We give a slight modification of Koerwien’s example that is also $\omega$-stable, eni-depth 2, but is Borel complete. Additionally, we prove that $I_{\infty\omega}(\varPhi) \lt \beth_{\omega_1}$ whenever $(\operatorname{Mod}(\varPhi),{\cong})$ is Borel.
DOI : 10.4064/fm326-11-2016
Keywords: define investigate hc forcing invariant formulas set theory whose interpretations hereditarily countable sets well behaved under forcing extensions leads naturally notion cardinality varphi sentences varphi omega omega which counts number sentences infty omega forcing extension become canonical scott sentence model varphi cardinal bounds complexity operatorname mod varphi cong class models varphi universe omega proving operatorname mod varphi cong borel reducible operatorname mod varpsi cong whenever varpsi varphi using these tools analyze complexity class countable models complete first order theories which operatorname mod cong properly analytic yet admit different behavior prove binary splitting refining equivalence relations koerwien example eni depth omega stable theory have operatorname mod cong non borel yet neither borel complete slight modification koerwien example omega stable eni depth borel complete additionally prove infty omega varphi beth omega whenever operatorname mod varphi cong borel

Douglas Ulrich 1 ; Richard Rast 1 ; Michael C. Laskowski 1

1 Department of Mathematics University of Maryland College Park, MD 20742, U.S.A.
@article{10_4064_fm326_11_2016,
     author = {Douglas Ulrich and Richard Rast and Michael C. Laskowski},
     title = {Borel complexity and potential canonical {Scott} sentences},
     journal = {Fundamenta Mathematicae},
     pages = {101--147},
     publisher = {mathdoc},
     volume = {239},
     number = {2},
     year = {2017},
     doi = {10.4064/fm326-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm326-11-2016/}
}
TY  - JOUR
AU  - Douglas Ulrich
AU  - Richard Rast
AU  - Michael C. Laskowski
TI  - Borel complexity and potential canonical Scott sentences
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 101
EP  - 147
VL  - 239
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm326-11-2016/
DO  - 10.4064/fm326-11-2016
LA  - en
ID  - 10_4064_fm326_11_2016
ER  - 
%0 Journal Article
%A Douglas Ulrich
%A Richard Rast
%A Michael C. Laskowski
%T Borel complexity and potential canonical Scott sentences
%J Fundamenta Mathematicae
%D 2017
%P 101-147
%V 239
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm326-11-2016/
%R 10.4064/fm326-11-2016
%G en
%F 10_4064_fm326_11_2016
Douglas Ulrich; Richard Rast; Michael C. Laskowski. Borel complexity and potential canonical Scott sentences. Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 101-147. doi : 10.4064/fm326-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm326-11-2016/

Cité par Sources :