Measures and slaloms
Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 149-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We examine measure-theoretic properties of spaces constructed using the technique of Todorčević (2000). We show that the existence of strictly positive measures on such spaces depends on combinatorial properties of certain families of slaloms. As a corollary, if $\mathrm {add}(\mathcal {N}) = \mathrm {non}(\mathcal {M})$, then there is a non-separable space which supports a measure and which cannot be mapped continuously onto $[0,1]^{\omega _1}$. Also, without any additional axioms we prove that there is a non-separable growth of $\omega $ supporting a measure and that there is a compactification $L$ of $\omega $ such that its remainder $L\setminus \omega $ is non-separable and the natural copy of $c_0$ is complemented in $C(L)$. Finally, we discuss examples of spaces not supporting measures but satisfying quite strong chain conditions. Our main tool is a characterization due to Kamburelis (1989) of Boolean algebras supporting measures in terms of their chain conditions in generic extensions by a measure algebra.
DOI : 10.4064/fm318-10-2016
Keywords: examine measure theoretic properties spaces constructed using technique todor evi existence strictly positive measures spaces depends combinatorial properties certain families slaloms corollary mathrm mathcal mathrm mathcal there non separable space which supports measure which cannot mapped continuously omega without additional axioms prove there non separable growth omega supporting measure there compactification omega its remainder setminus omega non separable natural copy complemented finally discuss examples spaces supporting measures satisfying quite strong chain conditions main tool characterization due kamburelis boolean algebras supporting measures terms their chain conditions generic extensions measure algebra

Piotr Borodulin-Nadzieja 1 ; Tanmay Inamdar 2

1 Instytut Matematyczny Uniwersytet Wrocławski 50-384 Wrocław, Poland
2 School of Mathematics University of East Anglia Norwich, NR4 7TJ, UK
@article{10_4064_fm318_10_2016,
     author = {Piotr Borodulin-Nadzieja and Tanmay Inamdar},
     title = {Measures and slaloms},
     journal = {Fundamenta Mathematicae},
     pages = {149--176},
     publisher = {mathdoc},
     volume = {239},
     number = {2},
     year = {2017},
     doi = {10.4064/fm318-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm318-10-2016/}
}
TY  - JOUR
AU  - Piotr Borodulin-Nadzieja
AU  - Tanmay Inamdar
TI  - Measures and slaloms
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 149
EP  - 176
VL  - 239
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm318-10-2016/
DO  - 10.4064/fm318-10-2016
LA  - en
ID  - 10_4064_fm318_10_2016
ER  - 
%0 Journal Article
%A Piotr Borodulin-Nadzieja
%A Tanmay Inamdar
%T Measures and slaloms
%J Fundamenta Mathematicae
%D 2017
%P 149-176
%V 239
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm318-10-2016/
%R 10.4064/fm318-10-2016
%G en
%F 10_4064_fm318_10_2016
Piotr Borodulin-Nadzieja; Tanmay Inamdar. Measures and slaloms. Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 149-176. doi : 10.4064/fm318-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm318-10-2016/

Cité par Sources :