The rational field is not universally definable in pseudo-exponentiation
Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 79-88.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the field of rational numbers is not definable by a universal formula in Zilber's pseudo-exponential field.
DOI : 10.4064/fm232-1-6
Keywords: field rational numbers definable universal formula zilbers pseudo exponential field

Jonathan Kirby 1

1 School of Mathematics University of East Anglia Norwich Research Park Norwich, NR4 7TJ, UK
@article{10_4064_fm232_1_6,
     author = {Jonathan Kirby},
     title = {The rational field is not universally definable in pseudo-exponentiation},
     journal = {Fundamenta Mathematicae},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/fm232-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-6/}
}
TY  - JOUR
AU  - Jonathan Kirby
TI  - The rational field is not universally definable in pseudo-exponentiation
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 79
EP  - 88
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-6/
DO  - 10.4064/fm232-1-6
LA  - en
ID  - 10_4064_fm232_1_6
ER  - 
%0 Journal Article
%A Jonathan Kirby
%T The rational field is not universally definable in pseudo-exponentiation
%J Fundamenta Mathematicae
%D 2016
%P 79-88
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-6/
%R 10.4064/fm232-1-6
%G en
%F 10_4064_fm232_1_6
Jonathan Kirby. The rational field is not universally definable in pseudo-exponentiation. Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 79-88. doi : 10.4064/fm232-1-6. http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-6/

Cité par Sources :