The rational field is not universally definable in pseudo-exponentiation
Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 79-88
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that the field of rational numbers is not definable by a universal formula in Zilber's pseudo-exponential field.
Keywords:
field rational numbers definable universal formula zilbers pseudo exponential field
Affiliations des auteurs :
Jonathan Kirby 1
@article{10_4064_fm232_1_6,
author = {Jonathan Kirby},
title = {The rational field is not universally definable in pseudo-exponentiation},
journal = {Fundamenta Mathematicae},
pages = {79--88},
year = {2016},
volume = {232},
number = {1},
doi = {10.4064/fm232-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-6/}
}
Jonathan Kirby. The rational field is not universally definable in pseudo-exponentiation. Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 79-88. doi: 10.4064/fm232-1-6
Cité par Sources :