Calibres, compacta and diagonals
Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a space $Z$ let $\mathcal {K}(Z)$ denote the partially ordered set of all compact subspaces of $Z$ under set inclusion. If $X$ is a compact space, $\Delta $ is the diagonal in $X^2$, and $\mathcal {K}(X^2 \setminus \Delta )$ has calibre $(\omega _1,\omega )$, then $X$ is metrizable. There is a compact space $X$ such that $X^2 \setminus \Delta $ has relative calibre $(\omega _1,\omega )$ in $\mathcal {K}(X^2 \setminus \Delta )$, but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on $\mathcal {K}(A)$ for every subspace of a space $X$ are answered.
DOI : 10.4064/fm232-1-1
Mots-clés : space mathcal denote partially ordered set compact subspaces under set inclusion compact space delta diagonal mathcal setminus delta has calibre omega omega metrizable there compact space setminus delta has relative calibre omega omega mathcal setminus delta which metrizable questions cascales concerning order constraints mathcal every subspace space answered

Paul Gartside 1 ; Jeremiah Morgan 1

1 Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, U.S.A.
@article{10_4064_fm232_1_1,
     author = {Paul Gartside and Jeremiah Morgan},
     title = {Calibres, compacta and diagonals},
     journal = {Fundamenta Mathematicae},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/fm232-1-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-1/}
}
TY  - JOUR
AU  - Paul Gartside
AU  - Jeremiah Morgan
TI  - Calibres, compacta and diagonals
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 1
EP  - 19
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-1/
DO  - 10.4064/fm232-1-1
LA  - fr
ID  - 10_4064_fm232_1_1
ER  - 
%0 Journal Article
%A Paul Gartside
%A Jeremiah Morgan
%T Calibres, compacta and diagonals
%J Fundamenta Mathematicae
%D 2016
%P 1-19
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-1/
%R 10.4064/fm232-1-1
%G fr
%F 10_4064_fm232_1_1
Paul Gartside; Jeremiah Morgan. Calibres, compacta and diagonals. Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 1-19. doi : 10.4064/fm232-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-1/

Cité par Sources :