Commuting contractive families
Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 225-272.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A family $f_1,\ldots ,f_n$ of operators on a complete metric space $X$ is called contractive if there exists a positive $\lambda 1$ such that for any $x,y$ in $X$ we have $d(f_i(x),f_i(y)) \leq \lambda d(x,y)$ for some $i$. Austin conjectured that any commuting contractive family of operators has a common fixed point, and he proved this for the case of two operators. We show that Austin's conjecture is true for three operators, provided that $\lambda $ is sufficiently small.
DOI : 10.4064/fm231-3-2
Keywords: family ldots operators complete metric space called contractive there exists positive lambda have x leq lambda austin conjectured commuting contractive family operators has common fixed point proved operators austins conjecture three operators provided lambda sufficiently small

Luka Milićević 1

1 Trinity College Cambridge CB2 1TQ United Kingdom
@article{10_4064_fm231_3_2,
     author = {Luka Mili\'cevi\'c},
     title = {Commuting contractive families},
     journal = {Fundamenta Mathematicae},
     pages = {225--272},
     publisher = {mathdoc},
     volume = {231},
     number = {3},
     year = {2015},
     doi = {10.4064/fm231-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-2/}
}
TY  - JOUR
AU  - Luka Milićević
TI  - Commuting contractive families
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 225
EP  - 272
VL  - 231
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-2/
DO  - 10.4064/fm231-3-2
LA  - en
ID  - 10_4064_fm231_3_2
ER  - 
%0 Journal Article
%A Luka Milićević
%T Commuting contractive families
%J Fundamenta Mathematicae
%D 2015
%P 225-272
%V 231
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-2/
%R 10.4064/fm231-3-2
%G en
%F 10_4064_fm231_3_2
Luka Milićević. Commuting contractive families. Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 225-272. doi : 10.4064/fm231-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-2/

Cité par Sources :