Amenability and Ramsey theory in the metric setting
Fundamenta Mathematicae, Tome 231 (2015) no. 1, pp. 19-38.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a $G_\delta $ condition.
DOI : 10.4064/fm231-1-2
Keywords: moore fund math characterizes amenability automorphism groups countable ultrahomogeneous structures ramsey type property extend result automorphism groups metric fra structures which encompass polish groups application prove amenability delta condition

Adriane Kaïchouh 1

1 Institut Camille Jordan Université Lyon 1 69622 Villeurbanne, France
@article{10_4064_fm231_1_2,
     author = {Adriane Ka{\"\i}chouh},
     title = {Amenability and {Ramsey} theory in the metric setting},
     journal = {Fundamenta Mathematicae},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {231},
     number = {1},
     year = {2015},
     doi = {10.4064/fm231-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-2/}
}
TY  - JOUR
AU  - Adriane Kaïchouh
TI  - Amenability and Ramsey theory in the metric setting
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 19
EP  - 38
VL  - 231
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-2/
DO  - 10.4064/fm231-1-2
LA  - en
ID  - 10_4064_fm231_1_2
ER  - 
%0 Journal Article
%A Adriane Kaïchouh
%T Amenability and Ramsey theory in the metric setting
%J Fundamenta Mathematicae
%D 2015
%P 19-38
%V 231
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-2/
%R 10.4064/fm231-1-2
%G en
%F 10_4064_fm231_1_2
Adriane Kaïchouh. Amenability and Ramsey theory in the metric setting. Fundamenta Mathematicae, Tome 231 (2015) no. 1, pp. 19-38. doi : 10.4064/fm231-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-2/

Cité par Sources :