How to construct a Hovey triple from two cotorsion pairs
Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 281-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{A}$ be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs $(\mathcal{Q}, \widetilde{\mathcal{R}})$ and $(\widetilde{\mathcal{Q}}, \mathcal{R})$ in $\mathcal{A}$ satisfying $\widetilde{\mathcal{R}} \subseteq \mathcal{R}$ and $\mathcal{Q} \cap \widetilde{\mathcal{R}} = \widetilde{\mathcal{Q}} \cap \mathcal{R}$. We show how to construct a (necessarily unique) abelian model structure on $\mathcal{A}$ with $\mathcal{Q}$ (resp. $\widetilde{\mathcal{Q}}$) as the class of cofibrant (resp. trivially cofibrant) objects, and $\mathcal{R}$ (resp. $\widetilde{\mathcal{R}}$) as the class of fibrant (resp. trivially fibrant) objects.
DOI : 10.4064/fm230-3-4
Keywords: mathcal abelian category generally weakly idempotent complete exact category suppose have complete hereditary cotorsion pairs mathcal widetilde mathcal widetilde mathcal mathcal mathcal satisfying widetilde mathcal subseteq mathcal mathcal cap widetilde mathcal widetilde mathcal cap mathcal construct necessarily unique abelian model structure mathcal mathcal resp widetilde mathcal class cofibrant resp trivially cofibrant objects mathcal resp widetilde mathcal class fibrant resp trivially fibrant objects

James Gillespie 1

1 Ramapo College of New Jersey School of Theoretical and Applied Science 505 Ramapo Valley Road Mahwah, NJ 07430, U.S.A.
@article{10_4064_fm230_3_4,
     author = {James Gillespie},
     title = {How to construct a {Hovey} triple from two cotorsion pairs},
     journal = {Fundamenta Mathematicae},
     pages = {281--289},
     publisher = {mathdoc},
     volume = {230},
     number = {3},
     year = {2015},
     doi = {10.4064/fm230-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-4/}
}
TY  - JOUR
AU  - James Gillespie
TI  - How to construct a Hovey triple from two cotorsion pairs
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 281
EP  - 289
VL  - 230
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-4/
DO  - 10.4064/fm230-3-4
LA  - en
ID  - 10_4064_fm230_3_4
ER  - 
%0 Journal Article
%A James Gillespie
%T How to construct a Hovey triple from two cotorsion pairs
%J Fundamenta Mathematicae
%D 2015
%P 281-289
%V 230
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-4/
%R 10.4064/fm230-3-4
%G en
%F 10_4064_fm230_3_4
James Gillespie. How to construct a Hovey triple from two cotorsion pairs. Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 281-289. doi : 10.4064/fm230-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-4/

Cité par Sources :