How to construct a Hovey triple from two cotorsion pairs
Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 281-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{A}$ be an abelian category, or more generally a weakly idempotent complete
exact category, and suppose we have two complete hereditary cotorsion pairs
$(\mathcal{Q}, \widetilde{\mathcal{R}})$ and $(\widetilde{\mathcal{Q}}, \mathcal{R})$ in $\mathcal{A}$ satisfying
$\widetilde{\mathcal{R}} \subseteq \mathcal{R}$ and $\mathcal{Q} \cap \widetilde{\mathcal{R}} = \widetilde{\mathcal{Q}} \cap \mathcal{R}$.
We show how to construct a (necessarily unique) abelian model structure on $\mathcal{A}$
with $\mathcal{Q}$ (resp. $\widetilde{\mathcal{Q}}$) as the class of cofibrant
(resp. trivially cofibrant) objects, and $\mathcal{R}$ (resp. $\widetilde{\mathcal{R}}$)
as the class of fibrant (resp. trivially fibrant) objects.
Keywords:
mathcal abelian category generally weakly idempotent complete exact category suppose have complete hereditary cotorsion pairs mathcal widetilde mathcal widetilde mathcal mathcal mathcal satisfying widetilde mathcal subseteq mathcal mathcal cap widetilde mathcal widetilde mathcal cap mathcal construct necessarily unique abelian model structure mathcal mathcal resp widetilde mathcal class cofibrant resp trivially cofibrant objects mathcal resp widetilde mathcal class fibrant resp trivially fibrant objects
Affiliations des auteurs :
James Gillespie 1
@article{10_4064_fm230_3_4,
author = {James Gillespie},
title = {How to construct a {Hovey} triple from two cotorsion pairs},
journal = {Fundamenta Mathematicae},
pages = {281--289},
publisher = {mathdoc},
volume = {230},
number = {3},
year = {2015},
doi = {10.4064/fm230-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-4/}
}
James Gillespie. How to construct a Hovey triple from two cotorsion pairs. Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 281-289. doi: 10.4064/fm230-3-4
Cité par Sources :