$P$-sets and minimal right ideals in $\mathbb {N}^{*}$
Fundamenta Mathematicae, Tome 229 (2015) no. 3, pp. 277-293.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Recall that a $P$-set is a closed set $X$ such that the intersection of countably many neighborhoods of $X$ is again a neighborhood of $X$. We show that if $\mathfrak {t}= \mathfrak {c}$ then there is a minimal right ideal of $(\beta \mathbb {N},+)$ that is also a $P$-set. We also show that the existence of such $P$-sets implies the existence of $P$-points; in particular, it is consistent with ZFC that no minimal right ideal is a $P$-set. As an application of these results, we prove that it is both consistent with and independent of ZFC that the shift map and its inverse are (up to isomorphism) the unique chain transitive autohomeomorphisms of $\mathbb {N}^*$.
DOI : 10.4064/fm229-3-4
Keywords: recall p set closed set intersection countably many neighborhoods again neighborhood mathfrak mathfrak there minimal right ideal beta mathbb p set existence p sets implies existence p points particular consistent zfc minimal right ideal p set application these results prove consistent independent zfc shift map its inverse isomorphism unique chain transitive autohomeomorphisms nbsp mathbb *

W. R. Brian 1

1 Department of Mathematics Tulane University 6823 St. Charles Ave. New Orleans, LA 70118, U.S.A.
@article{10_4064_fm229_3_4,
     author = {W. R. Brian},
     title = {$P$-sets and minimal right ideals in $\mathbb {N}^{*}$},
     journal = {Fundamenta Mathematicae},
     pages = {277--293},
     publisher = {mathdoc},
     volume = {229},
     number = {3},
     year = {2015},
     doi = {10.4064/fm229-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm229-3-4/}
}
TY  - JOUR
AU  - W. R. Brian
TI  - $P$-sets and minimal right ideals in $\mathbb {N}^{*}$
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 277
EP  - 293
VL  - 229
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm229-3-4/
DO  - 10.4064/fm229-3-4
LA  - en
ID  - 10_4064_fm229_3_4
ER  - 
%0 Journal Article
%A W. R. Brian
%T $P$-sets and minimal right ideals in $\mathbb {N}^{*}$
%J Fundamenta Mathematicae
%D 2015
%P 277-293
%V 229
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm229-3-4/
%R 10.4064/fm229-3-4
%G en
%F 10_4064_fm229_3_4
W. R. Brian. $P$-sets and minimal right ideals in $\mathbb {N}^{*}$. Fundamenta Mathematicae, Tome 229 (2015) no. 3, pp. 277-293. doi : 10.4064/fm229-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm229-3-4/

Cité par Sources :