Coloring grids
Fundamenta Mathematicae, Tome 228 (2015) no. 3, pp. 283-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A structure $\mathcal {A}=(A;E_i)_{i\in n}$ where each $E_i$ is an equivalence relation on $A$ is called an $n$-grid if any two equivalence classes coming from distinct $E_i$'s intersect in a finite set. A function $\chi : A \to n$ is an acceptable coloring if for all $i \in n$, the $\chi ^{-1}(i)$ intersects each $E_i$-equivalence class in a finite set. If $B$ is a set, then the $n$-cube $B^n$ may be seen as an $n$-grid, where the equivalence classes of $E_i$ are the lines parallel to the $i$th coordinate axis. We use elementary submodels of the universe to characterize those $n$-grids which admit an acceptable coloring. As an application we show that if an $n$-grid $\mathcal {A}$ does not admit an acceptable coloring, then every finite $n$-cube is embeddable in $\mathcal {A}$.
Keywords:
structure mathcal where each equivalence relation called n grid equivalence classes coming distinct intersect finite set function chi acceptable coloring nbsp chi intersects each i equivalence class finite set set n cube may seen n grid where equivalence classes lines parallel ith coordinate axis elementary submodels universe characterize those n grids which admit acceptable coloring application n grid mathcal does admit acceptable coloring every finite n cube embeddable mathcal
Affiliations des auteurs :
Ramiro de la Vega 1
@article{10_4064_fm228_3_5,
author = {Ramiro de la Vega},
title = {Coloring grids},
journal = {Fundamenta Mathematicae},
pages = {283--289},
publisher = {mathdoc},
volume = {228},
number = {3},
year = {2015},
doi = {10.4064/fm228-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-3-5/}
}
Ramiro de la Vega. Coloring grids. Fundamenta Mathematicae, Tome 228 (2015) no. 3, pp. 283-289. doi: 10.4064/fm228-3-5
Cité par Sources :