Univoque sets for real numbers
Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 69-83
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $x\in (0,1)$, the univoque set for $x$, denoted $\mathcal {U}(x)$, is defined to be the set of $\beta \in (1,2)$ such that $x$ has only one representation of the form $x=x_{1}/\beta +x_{2}/\beta ^{2}+\cdots $ with $x_{i}\in \{0,1\}$. We prove that for any $x\in (0,1)$, $\mathcal {U}(x)$ contains a sequence $\{\beta _{k}\}_{k\geq 1}$ increasing to $2$. Moreover, $\mathcal {U}(x)$ is a Lebesgue null set of Hausdorff dimension $1$; both $\mathcal {U}(x)$ and its closure $\overline {\mathcal {U}(x)}$ are nowhere dense.
Keywords:
univoque set denoted mathcal defined set beta has only representation form beta beta cdots prove mathcal contains sequence beta geq increasing moreover mathcal lebesgue null set hausdorff dimension mathcal its closure overline mathcal nowhere dense
Affiliations des auteurs :
Fan Lü 1 ; Bo Tan 1 ; Jun Wu 1
@article{10_4064_fm227_1_5,
author = {Fan L\"u and Bo Tan and Jun Wu},
title = {Univoque sets for real numbers},
journal = {Fundamenta Mathematicae},
pages = {69--83},
publisher = {mathdoc},
volume = {227},
number = {1},
year = {2014},
doi = {10.4064/fm227-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-5/}
}
Fan Lü; Bo Tan; Jun Wu. Univoque sets for real numbers. Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 69-83. doi: 10.4064/fm227-1-5
Cité par Sources :