Univoque sets for real numbers
Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 69-83.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $x\in (0,1)$, the univoque set for $x$, denoted $\mathcal {U}(x)$, is defined to be the set of $\beta \in (1,2)$ such that $x$ has only one representation of the form $x=x_{1}/\beta +x_{2}/\beta ^{2}+\cdots $ with $x_{i}\in \{0,1\}$. We prove that for any $x\in (0,1)$, $\mathcal {U}(x)$ contains a sequence $\{\beta _{k}\}_{k\geq 1}$ increasing to $2$. Moreover, $\mathcal {U}(x)$ is a Lebesgue null set of Hausdorff dimension $1$; both $\mathcal {U}(x)$ and its closure $\overline {\mathcal {U}(x)}$ are nowhere dense.
DOI : 10.4064/fm227-1-5
Keywords: univoque set denoted mathcal defined set beta has only representation form beta beta cdots prove mathcal contains sequence beta geq increasing moreover mathcal lebesgue null set hausdorff dimension mathcal its closure overline mathcal nowhere dense

Fan Lü 1 ; Bo Tan 1 ; Jun Wu 1

1 School of Mathematics and Statistics Huazhong University of Science and Technology 430074, Wuhan, P.R. China
@article{10_4064_fm227_1_5,
     author = {Fan L\"u and Bo Tan and Jun Wu},
     title = {Univoque sets for real numbers},
     journal = {Fundamenta Mathematicae},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {227},
     number = {1},
     year = {2014},
     doi = {10.4064/fm227-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-5/}
}
TY  - JOUR
AU  - Fan Lü
AU  - Bo Tan
AU  - Jun Wu
TI  - Univoque sets for real numbers
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 69
EP  - 83
VL  - 227
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-5/
DO  - 10.4064/fm227-1-5
LA  - en
ID  - 10_4064_fm227_1_5
ER  - 
%0 Journal Article
%A Fan Lü
%A Bo Tan
%A Jun Wu
%T Univoque sets for real numbers
%J Fundamenta Mathematicae
%D 2014
%P 69-83
%V 227
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-5/
%R 10.4064/fm227-1-5
%G en
%F 10_4064_fm227_1_5
Fan Lü; Bo Tan; Jun Wu. Univoque sets for real numbers. Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 69-83. doi : 10.4064/fm227-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-5/

Cité par Sources :