Rothberger gaps in fragmented ideals
Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 35-68.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Rothberger number $\mathfrak {b}(\mathcal {I})$ of a definable ideal $\mathcal {I}$ on $\omega $ is the least cardinal $\kappa $ such that there exists a Rothberger gap of type $(\omega ,\kappa )$ in the quotient algebra $\mathcal {P}(\omega ) / \mathcal {I}$. We investigate $\mathfrak {b}(\mathcal {I})$ for a class of $F_\sigma $ ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is $\aleph _1$, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum many) different Rothberger numbers associated with fragmented ideals.
DOI : 10.4064/fm227-1-4
Keywords: rothberger number mathfrak mathcal definable ideal mathcal omega least cardinal kappa there exists rothberger gap type omega kappa quotient algebra mathcal omega mathcal investigate mathfrak mathcal class sigma ideals fragmented ideals prove these ideals linear growth ideal rothberger number aleph while others polynomial growth ideal above additivity measure consistent there infinitely many even continuum many different rothberger numbers associated fragmented ideals

Jörg Brendle 1 ; Diego Alejandro Mejía 2

1 Graduate School of System Informatics Kobe University 1-1 Rokkodai, Nada-ku 657-8501 Kobe, Japan
2 Graduate School of System Informatics Kobe University Kobe, Japan
@article{10_4064_fm227_1_4,
     author = {J\"org Brendle and Diego Alejandro Mej{\'\i}a},
     title = {Rothberger gaps in fragmented ideals},
     journal = {Fundamenta Mathematicae},
     pages = {35--68},
     publisher = {mathdoc},
     volume = {227},
     number = {1},
     year = {2014},
     doi = {10.4064/fm227-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-4/}
}
TY  - JOUR
AU  - Jörg Brendle
AU  - Diego Alejandro Mejía
TI  - Rothberger gaps in fragmented ideals
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 35
EP  - 68
VL  - 227
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-4/
DO  - 10.4064/fm227-1-4
LA  - en
ID  - 10_4064_fm227_1_4
ER  - 
%0 Journal Article
%A Jörg Brendle
%A Diego Alejandro Mejía
%T Rothberger gaps in fragmented ideals
%J Fundamenta Mathematicae
%D 2014
%P 35-68
%V 227
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-4/
%R 10.4064/fm227-1-4
%G en
%F 10_4064_fm227_1_4
Jörg Brendle; Diego Alejandro Mejía. Rothberger gaps in fragmented ideals. Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 35-68. doi : 10.4064/fm227-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-4/

Cité par Sources :