Easton functions and supercompactness
Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 279-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose that $\kappa $ is $\lambda $-supercompact witnessed by an elementary embedding $j:V\to M$ with critical point $\kappa $, and further suppose that $F$ is a function from the class of regular cardinals to the class of cardinals satisfying the requirements of Easton's theorem: (1) $\forall \alpha $ $\alpha \mathop {\rm cf}(F(\alpha ))$, and (2) $\alpha \beta \Rightarrow F(\alpha )\leq F(\beta )$. We address the question: assuming ${\rm GCH}$, what additional assumptions are necessary on $j$ and $F$ if one wants to be able to force the continuum function to agree with $F$ globally, while preserving the $\lambda $-supercompactness of $\kappa $? We show that, assuming ${\rm GCH}$, if $F$ is any function as above, and in addition for some regular cardinal $\lambda >\kappa $ there is an elementary embedding $j:V\to M$ with critical point $\kappa $ such that $\kappa $ is closed under $F$, the model $M$ is closed under $\lambda $-sequences, $H(F(\lambda ))\subseteq M$, and for each regular cardinal $\gamma \leq \lambda $ one has $(|j(F)(\gamma )|=F(\gamma ))^V$, then there is a cardinal-preserving forcing extension in which $2^\delta =F(\delta )$ for every regular cardinal $\delta $ and $\kappa $ remains $\lambda $-supercompact. This answers a question of [CM14].
DOI : 10.4064/fm226-3-6
Keywords: suppose kappa lambda supercompact witnessed elementary embedding critical point kappa further suppose function class regular cardinals class cardinals satisfying requirements eastons theorem forall alpha alpha mathop alpha alpha beta rightarrow alpha leq beta address question assuming gch what additional assumptions necessary wants able force continuum function agree globally while preserving lambda supercompactness kappa assuming gch function above addition regular cardinal lambda kappa there elementary embedding critical point kappa kappa closed under model closed under lambda sequences lambda subseteq each regular cardinal gamma leq lambda has gamma gamma there cardinal preserving forcing extension which delta delta every regular cardinal delta kappa remains lambda supercompact answers question

Brent Cody 1 ; Sy-David Friedman 2 ; Radek Honzik 3

1 Department of Mathematics and Applied Mathematics Virginia Commonwealth University 1015 Floyd Avenue Richmond, VA 23284, U.S.A.
2 Kurt Gödel Research Center for Mathematical Logic University of Vienna Währinger Straße 25 1090 Wien, Austria
3 Kurt Gödel Research Center for Mathematical Logic University of Vienna Währinger Straße 25 1090 Wien, Austria and Department of Logic Charles University Palachovo nám. 2 116 38 Praha 1, Czech Republic
@article{10_4064_fm226_3_6,
     author = {Brent Cody and Sy-David Friedman and Radek Honzik},
     title = {Easton functions and supercompactness},
     journal = {Fundamenta Mathematicae},
     pages = {279--296},
     publisher = {mathdoc},
     volume = {226},
     number = {3},
     year = {2014},
     doi = {10.4064/fm226-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-6/}
}
TY  - JOUR
AU  - Brent Cody
AU  - Sy-David Friedman
AU  - Radek Honzik
TI  - Easton functions and supercompactness
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 279
EP  - 296
VL  - 226
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-6/
DO  - 10.4064/fm226-3-6
LA  - en
ID  - 10_4064_fm226_3_6
ER  - 
%0 Journal Article
%A Brent Cody
%A Sy-David Friedman
%A Radek Honzik
%T Easton functions and supercompactness
%J Fundamenta Mathematicae
%D 2014
%P 279-296
%V 226
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-6/
%R 10.4064/fm226-3-6
%G en
%F 10_4064_fm226_3_6
Brent Cody; Sy-David Friedman; Radek Honzik. Easton functions and supercompactness. Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 279-296. doi : 10.4064/fm226-3-6. http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-6/

Cité par Sources :