Dimension-raising maps in a large scale
Fundamenta Mathematicae, Tome 223 (2013) no. 1, pp. 83-97.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Hurewicz's dimension-raising theorem states that $\dim Y \leq \dim X + n$ for every $n$-to-$1$ map $f: X\rightarrow Y$. In this paper we introduce a new notion of finite-to-one like map in a large scale setting. Using this notion we formulate a dimension-raising type theorem for asymptotic dimension and asymptotic Assouad–Nagata dimension. It is also well-known (Hurewicz's finite-to-one mapping theorem) that $\dim X \leq n$ if and only if there exists an $(n+1)$-to-$1$ map from a $0$-dimensional space onto $X$. We formulate a finite-to-one mapping type theorem for asymptotic dimension and asymptotic Assouad–Nagata dimension.
DOI : 10.4064/fm223-1-6
Keywords: hurewiczs dimension raising theorem states dim leq dim every n to map rightarrow paper introduce notion finite to one map large scale setting using notion formulate dimension raising type theorem asymptotic dimension asymptotic assouad nagata dimension well known hurewiczs finite to one mapping theorem dim leq only there exists to map dimensional space formulate finite to one mapping type theorem asymptotic dimension asymptotic assouad nagata dimension

Takahisa Miyata 1 ; Žiga Virk 2

1 Department of Mathematics and Informatics Graduate School of Human Development and Environment Kobe University Kobe, 657-8501 Japan
2 Faculty of Mathematics and Physics University of Ljubljana Jadranska 21 Ljubljana, 1000 Slovenia
@article{10_4064_fm223_1_6,
     author = {Takahisa Miyata and \v{Z}iga Virk},
     title = {Dimension-raising maps in a large scale},
     journal = {Fundamenta Mathematicae},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {223},
     number = {1},
     year = {2013},
     doi = {10.4064/fm223-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-6/}
}
TY  - JOUR
AU  - Takahisa Miyata
AU  - Žiga Virk
TI  - Dimension-raising maps in a large scale
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 83
EP  - 97
VL  - 223
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-6/
DO  - 10.4064/fm223-1-6
LA  - en
ID  - 10_4064_fm223_1_6
ER  - 
%0 Journal Article
%A Takahisa Miyata
%A Žiga Virk
%T Dimension-raising maps in a large scale
%J Fundamenta Mathematicae
%D 2013
%P 83-97
%V 223
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-6/
%R 10.4064/fm223-1-6
%G en
%F 10_4064_fm223_1_6
Takahisa Miyata; Žiga Virk. Dimension-raising maps in a large scale. Fundamenta Mathematicae, Tome 223 (2013) no. 1, pp. 83-97. doi : 10.4064/fm223-1-6. http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-6/

Cité par Sources :