When $C_p(X)$ is domain representable
Fundamenta Mathematicae, Tome 223 (2013) no. 1, pp. 65-81.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M$ be a metrizable group. Let $G$ be a dense subgroup of $M^X$. We prove that if $G$ is domain representable, then $G = M^X$. The following corollaries answer open questions. If $X$ is completely regular and $C_p(X)$ is domain representable, then $X$ is discrete. If $X$ is zero-dimensional, $ T_2$, and $C_p(X,\mathbb {D})$ is subcompact, then $X$ is discrete.
DOI : 10.4064/fm223-1-5
Keywords: metrizable group dense subgroup prove domain representable following corollaries answer questions completely regular domain representable discrete zero dimensional mathbb subcompact discrete

William Fleissner 1 ; Lynne Yengulalp 2

1 Department of Mathematics University of Kansas Lawrence, KS 66045, U.S.A.
2 Department of Mathematics University of Dayton Dayton, OH 45469, U.S.A.
@article{10_4064_fm223_1_5,
     author = {William Fleissner and Lynne Yengulalp},
     title = {When $C_p(X)$ is domain representable},
     journal = {Fundamenta Mathematicae},
     pages = {65--81},
     publisher = {mathdoc},
     volume = {223},
     number = {1},
     year = {2013},
     doi = {10.4064/fm223-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-5/}
}
TY  - JOUR
AU  - William Fleissner
AU  - Lynne Yengulalp
TI  - When $C_p(X)$ is domain representable
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 65
EP  - 81
VL  - 223
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-5/
DO  - 10.4064/fm223-1-5
LA  - en
ID  - 10_4064_fm223_1_5
ER  - 
%0 Journal Article
%A William Fleissner
%A Lynne Yengulalp
%T When $C_p(X)$ is domain representable
%J Fundamenta Mathematicae
%D 2013
%P 65-81
%V 223
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-5/
%R 10.4064/fm223-1-5
%G en
%F 10_4064_fm223_1_5
William Fleissner; Lynne Yengulalp. When $C_p(X)$ is domain representable. Fundamenta Mathematicae, Tome 223 (2013) no. 1, pp. 65-81. doi : 10.4064/fm223-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-5/

Cité par Sources :