Brown’s lemma in second-order arithmetic
Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Brown’s lemma states that in every finite coloring of the natural numbers there is a homogeneous piecewise syndetic set. We show that Brown’s lemma is equivalent to $\mathsf {I}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We show in contrast that (infinite) van der Waerden’s theorem is equivalent to $\mathsf {B}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We finally consider the finite version of Brown’s lemma and show that it is provable in $\mathsf {RCA}_0$ but not in $\mathsf {RCA}_0^*$.
Keywords:
brown lemma states every finite coloring natural numbers there homogeneous piecewise syndetic set brown lemma equivalent mathsf sigma mathsf rca * contrast infinite van der waerden theorem equivalent mathsf sigma mathsf rca * finally consider finite version brown lemma provable mathsf rca mathsf rca *
Affiliations des auteurs :
Emanuele Frittaion  1
@article{10_4064_fm221_9_2016,
author = {Emanuele Frittaion},
title = {Brown{\textquoteright}s lemma in second-order arithmetic},
journal = {Fundamenta Mathematicae},
pages = {269--283},
year = {2017},
volume = {238},
number = {3},
doi = {10.4064/fm221-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/}
}
Emanuele Frittaion. Brown’s lemma in second-order arithmetic. Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283. doi: 10.4064/fm221-9-2016
Cité par Sources :