Brown’s lemma in second-order arithmetic
Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Brown’s lemma states that in every finite coloring of the natural numbers there is a homogeneous piecewise syndetic set. We show that Brown’s lemma is equivalent to $\mathsf {I}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We show in contrast that (infinite) van der Waerden’s theorem is equivalent to $\mathsf {B}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We finally consider the finite version of Brown’s lemma and show that it is provable in $\mathsf {RCA}_0$ but not in $\mathsf {RCA}_0^*$.
DOI : 10.4064/fm221-9-2016
Keywords: brown lemma states every finite coloring natural numbers there homogeneous piecewise syndetic set brown lemma equivalent mathsf sigma mathsf rca * contrast infinite van der waerden theorem equivalent mathsf sigma mathsf rca * finally consider finite version brown lemma provable mathsf rca mathsf rca *

Emanuele Frittaion 1

1 Mathematical Institute Tohoku University Tohoku, Japan
@article{10_4064_fm221_9_2016,
     author = {Emanuele Frittaion},
     title = {Brown{\textquoteright}s lemma in second-order arithmetic},
     journal = {Fundamenta Mathematicae},
     pages = {269--283},
     publisher = {mathdoc},
     volume = {238},
     number = {3},
     year = {2017},
     doi = {10.4064/fm221-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/}
}
TY  - JOUR
AU  - Emanuele Frittaion
TI  - Brown’s lemma in second-order arithmetic
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 269
EP  - 283
VL  - 238
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/
DO  - 10.4064/fm221-9-2016
LA  - en
ID  - 10_4064_fm221_9_2016
ER  - 
%0 Journal Article
%A Emanuele Frittaion
%T Brown’s lemma in second-order arithmetic
%J Fundamenta Mathematicae
%D 2017
%P 269-283
%V 238
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/
%R 10.4064/fm221-9-2016
%G en
%F 10_4064_fm221_9_2016
Emanuele Frittaion. Brown’s lemma in second-order arithmetic. Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283. doi: 10.4064/fm221-9-2016

Cité par Sources :