Brown’s lemma in second-order arithmetic
Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Brown’s lemma states that in every finite coloring of the natural numbers there is a homogeneous piecewise syndetic set. We show that Brown’s lemma is equivalent to $\mathsf {I}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We show in contrast that (infinite) van der Waerden’s theorem is equivalent to $\mathsf {B}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We finally consider the finite version of Brown’s lemma and show that it is provable in $\mathsf {RCA}_0$ but not in $\mathsf {RCA}_0^*$.
DOI : 10.4064/fm221-9-2016
Keywords: brown lemma states every finite coloring natural numbers there homogeneous piecewise syndetic set brown lemma equivalent mathsf sigma mathsf rca * contrast infinite van der waerden theorem equivalent mathsf sigma mathsf rca * finally consider finite version brown lemma provable mathsf rca mathsf rca *

Emanuele Frittaion 1

1 Mathematical Institute Tohoku University Tohoku, Japan
@article{10_4064_fm221_9_2016,
     author = {Emanuele Frittaion},
     title = {Brown{\textquoteright}s lemma in second-order arithmetic},
     journal = {Fundamenta Mathematicae},
     pages = {269--283},
     publisher = {mathdoc},
     volume = {238},
     number = {3},
     year = {2017},
     doi = {10.4064/fm221-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/}
}
TY  - JOUR
AU  - Emanuele Frittaion
TI  - Brown’s lemma in second-order arithmetic
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 269
EP  - 283
VL  - 238
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/
DO  - 10.4064/fm221-9-2016
LA  - en
ID  - 10_4064_fm221_9_2016
ER  - 
%0 Journal Article
%A Emanuele Frittaion
%T Brown’s lemma in second-order arithmetic
%J Fundamenta Mathematicae
%D 2017
%P 269-283
%V 238
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/
%R 10.4064/fm221-9-2016
%G en
%F 10_4064_fm221_9_2016
Emanuele Frittaion. Brown’s lemma in second-order arithmetic. Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283. doi : 10.4064/fm221-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/

Cité par Sources :