Brown’s lemma in second-order arithmetic
Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Brown’s lemma states that in every finite coloring of the natural numbers there is a homogeneous piecewise syndetic set. We show that Brown’s lemma is equivalent to $\mathsf {I}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We show in contrast that (infinite) van der Waerden’s theorem is equivalent to $\mathsf {B}\Sigma ^0_2$ over $\mathsf {RCA}_0^*$. We finally consider the finite version of Brown’s lemma and show that it is provable in $\mathsf {RCA}_0$ but not in $\mathsf {RCA}_0^*$.
Keywords:
brown lemma states every finite coloring natural numbers there homogeneous piecewise syndetic set brown lemma equivalent mathsf sigma mathsf rca * contrast infinite van der waerden theorem equivalent mathsf sigma mathsf rca * finally consider finite version brown lemma provable mathsf rca mathsf rca *
Affiliations des auteurs :
Emanuele Frittaion 1
@article{10_4064_fm221_9_2016,
author = {Emanuele Frittaion},
title = {Brown{\textquoteright}s lemma in second-order arithmetic},
journal = {Fundamenta Mathematicae},
pages = {269--283},
publisher = {mathdoc},
volume = {238},
number = {3},
year = {2017},
doi = {10.4064/fm221-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-9-2016/}
}
Emanuele Frittaion. Brown’s lemma in second-order arithmetic. Fundamenta Mathematicae, Tome 238 (2017) no. 3, pp. 269-283. doi: 10.4064/fm221-9-2016
Cité par Sources :