Relational quotients
Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 189-220
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal {K}$ be a class of finite relational structures. We define $\mathcal {EK}$ to be the class of finite relational structures $\mathbf {A}$ such that $\mathbf {A}/E\in \mathcal {K}$, where $E$ is an equivalence relation defined on the structure $\mathbf {A}$. Adding arbitrary linear orderings to structures from $\mathcal {EK}$, we get the class $\mathcal {OEK}$. If we add linear orderings to structures from $\mathcal {EK}$ such that each $E$-equivalence class is an interval then we get the class $\mathcal
{CE}[\mathcal{K}^{\ast }]$. We provide a list of Fraïssé classes among $\mathcal {EK}$, $\mathcal {OEK}$ and $\mathcal {CE}[\mathcal{K}^{\ast }]$. In addition, we classify $\mathcal {OEK}$ and $\mathcal {CE}[\mathcal{K}^{\ast }]$ according to the Ramsey property. We also conduct the same analysis after adding additional structure to each equivalence class. As an application, we give a topological interpretation using the technique introduced in Kechris, Pestov and Todorčević. In particular, we extend the lists of known extremely amenable groups and universal minimal flows.
Mots-clés :
mathcal class finite relational structures define mathcal class finite relational structures mathbf mathbf mathcal where equivalence relation defined structure mathbf adding arbitrary linear orderings structures mathcal get class mathcal oek linear orderings structures mathcal each e equivalence class interval get class mathcal mathcal ast provide list fra classes among mathcal mathcal oek mathcal mathcal ast addition classify mathcal oek mathcal mathcal ast according ramsey property conduct analysis after adding additional structure each equivalence class application topological interpretation using technique introduced kechris pestov todor evi particular extend lists known extremely amenable groups universal minimal flows
Affiliations des auteurs :
Miodrag Sokić 1
@article{10_4064_fm221_3_1,
author = {Miodrag Soki\'c},
title = {Relational quotients},
journal = {Fundamenta Mathematicae},
pages = {189--220},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2013},
doi = {10.4064/fm221-3-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-1/}
}
Miodrag Sokić. Relational quotients. Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 189-220. doi: 10.4064/fm221-3-1
Cité par Sources :