Relational quotients
Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 189-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal {K}$ be a class of finite relational structures. We define $\mathcal {EK}$ to be the class of finite relational structures $\mathbf {A}$ such that $\mathbf {A}/E\in \mathcal {K}$, where $E$ is an equivalence relation defined on the structure $\mathbf {A}$. Adding arbitrary linear orderings to structures from $\mathcal {EK}$, we get the class $\mathcal {OEK}$. If we add linear orderings to structures from $\mathcal {EK}$ such that each $E$-equivalence class is an interval then we get the class $\mathcal {CE}[\mathcal{K}^{\ast }]$. We provide a list of Fraïssé classes among $\mathcal {EK}$, $\mathcal {OEK}$ and $\mathcal {CE}[\mathcal{K}^{\ast }]$. In addition, we classify $\mathcal {OEK}$ and $\mathcal {CE}[\mathcal{K}^{\ast }]$ according to the Ramsey property. We also conduct the same analysis after adding additional structure to each equivalence class. As an application, we give a topological interpretation using the technique introduced in Kechris, Pestov and Todorčević. In particular, we extend the lists of known extremely amenable groups and universal minimal flows.
DOI : 10.4064/fm221-3-1
Mots-clés : mathcal class finite relational structures define mathcal class finite relational structures mathbf mathbf mathcal where equivalence relation defined structure mathbf adding arbitrary linear orderings structures mathcal get class mathcal oek linear orderings structures mathcal each e equivalence class interval get class mathcal mathcal ast provide list fra classes among mathcal mathcal oek mathcal mathcal ast addition classify mathcal oek mathcal mathcal ast according ramsey property conduct analysis after adding additional structure each equivalence class application topological interpretation using technique introduced kechris pestov todor evi particular extend lists known extremely amenable groups universal minimal flows

Miodrag Sokić 1

1 Department of Mathematics California Institute of Technology Pasadena, CA 91125, U.S.A.
@article{10_4064_fm221_3_1,
     author = {Miodrag Soki\'c},
     title = {Relational quotients},
     journal = {Fundamenta Mathematicae},
     pages = {189--220},
     publisher = {mathdoc},
     volume = {221},
     number = {3},
     year = {2013},
     doi = {10.4064/fm221-3-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-1/}
}
TY  - JOUR
AU  - Miodrag Sokić
TI  - Relational quotients
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 189
EP  - 220
VL  - 221
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-1/
DO  - 10.4064/fm221-3-1
LA  - fr
ID  - 10_4064_fm221_3_1
ER  - 
%0 Journal Article
%A Miodrag Sokić
%T Relational quotients
%J Fundamenta Mathematicae
%D 2013
%P 189-220
%V 221
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-1/
%R 10.4064/fm221-3-1
%G fr
%F 10_4064_fm221_3_1
Miodrag Sokić. Relational quotients. Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 189-220. doi : 10.4064/fm221-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-1/

Cité par Sources :