Metric spaces admitting only trivial weak contractions
Fundamenta Mathematicae, Tome 221 (2013) no. 1, pp. 83-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $(X,d)$ is a metric space then a map $f\colon X\to X$ is defined to be a weak contraction if $d(f(x),f(y)) d(x,y)$ for all $x,y\in X$, $x\neq y$. We determine the simplest non-closed sets $X\subseteq \mathbb{R}^n$ in the sense of descriptive set-theoretic complexity such that every weak contraction $f\colon X\to X$ is constant. In order to do so, we prove that there exists a non-closed $F_{\sigma}$ set $F\subseteq \mathbb{R}$ such that every weak contraction $f\colon F\to F$ is constant. Similarly, there exists a non-closed $G_{\delta}$ set $G\subseteq \mathbb{R}$ such that every weak contraction $f\colon G\to G$ is constant. These answer questions of M. Elekes.We use measure-theoretic methods, first of all the concept of generalized Hausdorff measure.
DOI : 10.4064/fm221-1-4
Keywords: metric space map colon defined weak contraction neq determine simplest non closed sets subseteq mathbb sense descriptive set theoretic complexity every weak contraction colon constant order prove there exists non closed sigma set subseteq mathbb every weak contraction colon constant similarly there exists non closed delta set subseteq mathbb every weak contraction colon constant these answer questions elekes measure theoretic methods first concept generalized hausdorff measure

Richárd Balka 1

1 Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences PO Box 127, 1364 Budapest, Hungary
@article{10_4064_fm221_1_4,
     author = {Rich\'ard Balka},
     title = {Metric spaces admitting only trivial weak contractions},
     journal = {Fundamenta Mathematicae},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {221},
     number = {1},
     year = {2013},
     doi = {10.4064/fm221-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-1-4/}
}
TY  - JOUR
AU  - Richárd Balka
TI  - Metric spaces admitting only trivial weak contractions
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 83
EP  - 94
VL  - 221
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm221-1-4/
DO  - 10.4064/fm221-1-4
LA  - en
ID  - 10_4064_fm221_1_4
ER  - 
%0 Journal Article
%A Richárd Balka
%T Metric spaces admitting only trivial weak contractions
%J Fundamenta Mathematicae
%D 2013
%P 83-94
%V 221
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm221-1-4/
%R 10.4064/fm221-1-4
%G en
%F 10_4064_fm221_1_4
Richárd Balka. Metric spaces admitting only trivial weak contractions. Fundamenta Mathematicae, Tome 221 (2013) no. 1, pp. 83-94. doi : 10.4064/fm221-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm221-1-4/

Cité par Sources :