Embeddings of $C(K)$ spaces into $C(S, X)$ spaces with distortion strictly less than 3
Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 83-92
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the spirit of the classical Banach–Stone theorem, we prove that
if $K$ and $S$ are intervals of ordinals and $X$ is a Banach space
having non-trivial cotype, then the existence of an isomorphism $T$
from $C(K, X)$ onto $C(S, X)$ with distortion $\|T\| \, \|T^{-1}\|$
strictly less than 3 implies that some finite topological sum of $K$
is homeomorphic to some finite topological sum of $S$. Moreover, if
$X^{n}$ contains no subspace isomorphic to $X^{n+1}$ for every $n
\in \mathbb N$, then $K$ is homeomorphic to $S$. In other words, we
obtain a vector-valued Banach–Stone theorem which is an extension of
a Gordon theorem and at the same time an improvement of a Behrends and
Cambern theorem. In order to prove this, we show that if there
exists an embedding $T$ of a $C(K)$ space into a $C(S, X)$ space,
with distortion strictly less than $3$, then the cardinality of the
$\alpha$th derivative of $S$ is finite or greater than or equal to the
cardinality of the $\alpha$th derivative of $K$, for every ordinal $\alpha$.
Keywords:
spirit classical banach stone theorem prove intervals ordinals banach space having non trivial cotype existence isomorphism distortion strictly implies finite topological sum homeomorphic finite topological sum moreover contains subspace isomorphic every mathbb homeomorphic other words obtain vector valued banach stone theorem which extension gordon theorem time improvement behrends cambern theorem order prove there exists embedding space space distortion strictly cardinality alphath derivative finite greater equal cardinality alphath derivative every ordinal nbsp alpha
Affiliations des auteurs :
Leandro Candido 1 ; Elói Medina Galego 1
@article{10_4064_fm220_1_5,
author = {Leandro Candido and El\'oi Medina Galego},
title = {Embeddings of $C(K)$ spaces into $C(S, X)$ spaces with distortion strictly less than 3},
journal = {Fundamenta Mathematicae},
pages = {83--92},
publisher = {mathdoc},
volume = {220},
number = {1},
year = {2013},
doi = {10.4064/fm220-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-5/}
}
TY - JOUR AU - Leandro Candido AU - Elói Medina Galego TI - Embeddings of $C(K)$ spaces into $C(S, X)$ spaces with distortion strictly less than 3 JO - Fundamenta Mathematicae PY - 2013 SP - 83 EP - 92 VL - 220 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-5/ DO - 10.4064/fm220-1-5 LA - en ID - 10_4064_fm220_1_5 ER -
%0 Journal Article %A Leandro Candido %A Elói Medina Galego %T Embeddings of $C(K)$ spaces into $C(S, X)$ spaces with distortion strictly less than 3 %J Fundamenta Mathematicae %D 2013 %P 83-92 %V 220 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-5/ %R 10.4064/fm220-1-5 %G en %F 10_4064_fm220_1_5
Leandro Candido; Elói Medina Galego. Embeddings of $C(K)$ spaces into $C(S, X)$ spaces with distortion strictly less than 3. Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 83-92. doi: 10.4064/fm220-1-5
Cité par Sources :