On special partial types and weak canonical bases in simple theories
Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define the notion of a weak canonical base for a partial type in a simple theory. We prove that members of a certain family of partial types, which we call special partial types, admit a weak canonical base; this family properly contains the family of amalgamation bases.
DOI : 10.4064/fm220-1-1
Keywords: define notion weak canonical base partial type simple theory prove members certain family partial types which call special partial types admit weak canonical base family properly contains family amalgamation bases

Ziv Shami 1

1 Department of Mathematics and Computer Sciences The Ariel University Center of Samaria 44837 Ariel, Israel
@article{10_4064_fm220_1_1,
     author = {Ziv Shami},
     title = {On special partial types and weak canonical bases
 in simple theories},
     journal = {Fundamenta Mathematicae},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {220},
     number = {1},
     year = {2013},
     doi = {10.4064/fm220-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-1/}
}
TY  - JOUR
AU  - Ziv Shami
TI  - On special partial types and weak canonical bases
 in simple theories
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 1
EP  - 6
VL  - 220
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-1/
DO  - 10.4064/fm220-1-1
LA  - en
ID  - 10_4064_fm220_1_1
ER  - 
%0 Journal Article
%A Ziv Shami
%T On special partial types and weak canonical bases
 in simple theories
%J Fundamenta Mathematicae
%D 2013
%P 1-6
%V 220
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-1/
%R 10.4064/fm220-1-1
%G en
%F 10_4064_fm220_1_1
Ziv Shami. On special partial types and weak canonical bases
 in simple theories. Fundamenta Mathematicae, Tome 220 (2013) no. 1, pp. 1-6. doi : 10.4064/fm220-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm220-1-1/

Cité par Sources :