Prolongational centers and their depths
Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 287-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1926 Birkhoff defined the center depth, one of the fundamental invariants that characterize the topological structure of a dynamical system. In this paper, we introduce the concepts of prolongational centers and their depths, which lead to a complete family of topological invariants. Some basic properties of the prolongational centers and their depths are established. Also, we construct a dynamical system in which the depth of a prolongational center is a prescribed countable ordinal.
DOI : 10.4064/fm22-10-2015
Keywords: birkhoff defined center depth fundamental invariants characterize topological structure dynamical system paper introduce concepts prolongational centers their depths which lead complete family topological invariants basic properties prolongational centers their depths established construct dynamical system which depth prolongational center prescribed countable ordinal

Boyang Ding 1 ; Changming Ding 2

1 School of Economics Zhejiang Gongshang University Hangzhou, Zhejiang 310018, P.R. China
2 School of Mathematical Sciences Xiamen University Xiamen, Fujian 361005, P.R. China
@article{10_4064_fm22_10_2015,
     author = {Boyang Ding and Changming Ding},
     title = {Prolongational centers and their depths},
     journal = {Fundamenta Mathematicae},
     pages = {287--296},
     publisher = {mathdoc},
     volume = {234},
     number = {3},
     year = {2016},
     doi = {10.4064/fm22-10-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm22-10-2015/}
}
TY  - JOUR
AU  - Boyang Ding
AU  - Changming Ding
TI  - Prolongational centers and their depths
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 287
EP  - 296
VL  - 234
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm22-10-2015/
DO  - 10.4064/fm22-10-2015
LA  - en
ID  - 10_4064_fm22_10_2015
ER  - 
%0 Journal Article
%A Boyang Ding
%A Changming Ding
%T Prolongational centers and their depths
%J Fundamenta Mathematicae
%D 2016
%P 287-296
%V 234
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm22-10-2015/
%R 10.4064/fm22-10-2015
%G en
%F 10_4064_fm22_10_2015
Boyang Ding; Changming Ding. Prolongational centers and their depths. Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 287-296. doi : 10.4064/fm22-10-2015. http://geodesic.mathdoc.fr/articles/10.4064/fm22-10-2015/

Cité par Sources :